cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308654 The overpartition triangle: T(n,k) is the number of overpartitions of n with exactly k positive integer parts, 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 0, 2, 4, 2, 0, 2, 6, 4, 2, 0, 2, 8, 8, 4, 2, 0, 2, 10, 14, 8, 4, 2, 0, 2, 12, 20, 16, 8, 4, 2, 0, 2, 14, 28, 26, 16, 8, 4, 2, 0, 2, 16, 38, 40, 28, 16, 8, 4, 2, 0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2, 0, 2, 20, 60, 84, 72, 48, 28, 16, 8, 4, 2
Offset: 0

Views

Author

Gregory L. Simay, Jun 14 2019

Keywords

Comments

T(n,0) = A000007(n).
T(n,1) = A040000(n) for n > 0.
T(n,2) = A005843(n-1).
T(n,3) = 2*A007980(n-3).
T(n,4) = 2*A061866(n-1).
T(n,5) = 2*A091773(n-5).
Conjecture: T(n,k) = 2*(the associated Poincaré series). If T(n,1) were 1 for n>0, then T(n, k>1) would be a Poincaré series.

Examples

			T(5,3) = 8 and counts the overpartitions 3,1,1; 3',1,1; 3,1',1; 3',1',1; 2,2,1; 2',2,1; 2,2,1' and 2',2,1'.
T(16,5) = 404 = T(11,5) + 2*( T(11,4) + T(11,3) + T(11,2) + T(11,1)) = 72 + 2*(84 + 60 + 20 + 2) = 404.
T(16, 5) = T(15,4) + T(11,4) + T(10,4) + T(6,4) + T(5,4) = 248 + 84 + 60 + 8 + 4 = 404.
T(9,1) + T(8,2) + T(7,3) + T(6,4) + T(6,5)= 2 + 14 + 20 + 8 + 2 = 46 =A300415(10).
Triangle: T(n,k) begins:
  1;
  0, 2;
  0, 2,  2;
  0, 2,  4,  2;
  0, 2,  6,  4,  2;
  0, 2,  8,  8,  4,  2;
  0, 2, 10, 14,  8,  4,  2;
  0, 2, 12, 20, 16,  8,  4,  2;
  0, 2, 14, 28, 26, 16,  8,  4, 2;
  0, 2, 16, 38, 40, 28, 16,  8, 4, 2;
  0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2;
  ...
		

Crossrefs

Row sums give A015128.
Main diagonal T(n,n) gives A040000.

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          expand(`if`(j>0, 2*x^j, 1)*b(n-i*j, i-1)), j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Jun 15 2019
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Expand[If[j > 0, 2*x^j, 1]*b[n - i*j, i - 1]], {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, n]];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Dec 10 2019, after Alois P. Heinz *)

Formula

Sum_{k=0..n} T(n,k) = A015128(n), the number of overpartitions of n.
If k > n, T(n,k) = 0.
If n >= k > n/2, T(n,k) = 2*A015128(n-k).
Conjecture: T(n,k) = T(n-k, k) + 2*(T(n-k, k-1) + ... + T(n-k, 1)).
Conjecture: T(n,k) = T(n-1, k-1) + T(n-k, k-1) + T(n-k-1, k-1) + T(n-2k, k-1) + T(n-2k-1) + ...
Conjecture: T(n,1) + T(n-1,2) + ... + T(n-floor(n/2),floor(n/2)) = A300415(n+1).
T(n,2) = 2n - 2.
Conjecture: g.f. T(n,k) = 2*(1+x)(1+x^2)...(1+x^(k-1))/((1-x)...(1-x^k)).
Sum_{k=1..n} k * T(n,k) = A235792(n). - Alois P. Heinz, Jun 15 2019