A308682 Number of ways of partitioning the set of the first n positive triangular numbers into two subsets whose sums differ at most by 1.
1, 1, 0, 0, 1, 1, 1, 1, 2, 7, 6, 8, 13, 42, 33, 52, 105, 318, 310, 485, 874, 3281, 2974, 5240, 9488, 34233, 30418, 55715, 104730, 378529, 352467, 642418, 1193879, 4466874, 4165910, 7762907, 14493951, 54162165, 50621491, 95133799, 179484713, 674845081
Offset: 0
Keywords
Examples
a(4) = 1: 1,3,6/10. a(5) = 1: 1,6,10/3,15. a(6) = 1: 1,6,21/3,10,15. a(7) = 1: 1,3,10,28/6,15,21. a(8) = 2: 1,6,10,15,28/3,21,36; 1,10,21,28/3,6,15,36.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Wikipedia, Partition problem
Programs
-
Maple
s:= proc(n) s(n):= `if`(n=0, 1, n*(n+1)/2+s(n-1)) end: b:= proc(n, i) option remember; `if`(i=0, `if`(n<=1, 1, 0), `if`(n>s(i), 0, (p->b(n+p, i-1)+b(abs(n-p), i-1))(i*(i+1)/2))) end: a:= n-> ceil(b(0, n)/2): seq(a(n), n=0..45);
-
Mathematica
s[n_] := s[n] = If[n == 0, 1, n(n+1)/2 + s[n-1]]; b[n_, i_] := b[n, i] = If[i == 0, If[n <= 1, 1, 0], If[n > s[i], 0, Function[p, b[n + p, i-1] + b[Abs[n-p], i-1]][i(i+1)/2]]]; a[n_] := Ceiling[b[0, n]/2]; a /@ Range[0, 45] (* Jean-François Alcover, May 04 2020, translated from Maple *)