A308699 Smallest m >= n such that 1 - m! / ((m-n)!*m^n) < 1/2.
0, 1, 3, 6, 10, 17, 24, 33, 43, 55, 69, 83, 100, 117, 136, 157, 179, 202, 227, 253, 281, 310, 341, 373, 407, 442, 478, 516, 555, 596, 638, 682, 727, 773, 821, 870, 921, 974, 1027, 1082, 1139, 1197, 1257, 1317, 1380, 1444, 1509, 1576, 1644, 1713, 1784, 1857, 1931
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
- Wikipedia, Birthday problem
- Wikipedia, Hash table
Programs
-
Maple
a:= proc(n) option remember; local m; Digits:= 20; if n<2 then m:= n else for m from 2*a(n-1)-a(n-2) do if n*log(0.0+m)
-
Mathematica
a[n_] := a[n] = If[n < 2, n, Module[{m}, For[m = 2*a[n-1] - a[n-2], True, m++, If[n*Log[m] < Log[2.`20.] + LogGamma[1.`20. + m] - LogGamma[1.`20. + m - n], Return[m]]]]]; a /@ Range[0, 55] (* Jean-François Alcover, Apr 19 2021, after Alois P. Heinz *)
-
Python
from math import comb, factorial def A308699(n): f = factorial(n) def p(m): return comb(m,n)*f<<1 kmin, kmax = n-1, n while p(kmax) <= kmax**n: kmax<<=1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if p(kmid) > kmid**n: kmax = kmid else: kmin = kmid return kmax # Chai Wah Wu, Jan 21 2025
Formula
a(n) = A072829(n)+1 for n>1.
Comments