A308701 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*(d-1)).
1, 1, 2, 1, 3, 2, 1, 5, 10, 3, 1, 9, 82, 67, 2, 1, 17, 730, 4101, 626, 4, 1, 33, 6562, 262153, 390626, 7788, 2, 1, 65, 59050, 16777233, 244140626, 60466262, 117650, 4, 1, 129, 531442, 1073741857, 152587890626, 470184985314, 13841287202, 2097219, 3
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, ... 2, 3, 5, 9, 17, ... 2, 10, 82, 730, 6562, ... 3, 67, 4101, 262153, 16777233, ... 2, 626, 390626, 244140626, 152587890626, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..53, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := DivisorSum[n, #^(k*(# - 1)) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)
Formula
L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^(j^(k*j-k-1))).
G.f. of column k: Sum_{j>=1} j^(k*(j-1)) * x^j/(1 - x^j).