A308707 a(n) = gcd(n, phi(n) + sigma(n)), where phi is A000010 and sigma is A000203.
1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 4, 13, 2, 1, 1, 17, 9, 19, 10, 1, 2, 23, 4, 1, 2, 1, 4, 29, 10, 31, 1, 1, 2, 1, 1, 37, 2, 1, 2, 41, 6, 43, 4, 3, 2, 47, 4, 1, 1, 1, 2, 53, 6, 1, 8, 1, 2, 59, 4, 61, 2, 7, 1, 1, 2, 67, 2, 1, 14, 71, 3, 73, 2, 1, 4, 1, 6, 79, 2, 1, 2, 83, 4, 1, 2, 1, 44, 89, 6
Offset: 1
Keywords
Crossrefs
Programs
-
Magma
[Gcd(n, EulerPhi(n)+SumOfDivisors(n)): n in [1..100]];
-
PARI
a(n) = gcd(n, eulerphi(n) + sigma(n)); \\ Michel Marcus, Jun 19 2019
Formula
a(n) = gcd(n, A065387(n)). - Michel Marcus, Jun 19 2019
a(n) = n if n = 1 or n is prime: A008578.
a(2*p) = 2 if p prime >= 3: A100484 \ {4}. - Bernard Schott, Jun 26 2019
Comments