A308723 Total number of parts in all m-cyclic compositions of n (where each part of size m can be colored with one of m colors).
1, 4, 10, 26, 59, 160, 383, 1018, 2606, 6836, 17721, 46580, 121405, 318212, 832190, 2179358, 5702903, 14933264, 39088187, 102341134, 267915110, 701426484, 1836311925, 4807575700, 12586269265, 32951401540, 86267576506, 225851752438, 591286729907, 1548009602240, 4052739537911
Offset: 1
Examples
We have a(1) = 1 because 1_1 is the only m-color cyclic composition of n = 1 and the total number of parts is 1. We have a(2) = 4 because 2_1, 2_2, 1_1 + 1_1 are all the m-color cyclic compositions of 2 and the total number of parts is 1 + 1 + 2 = 4. We have a(3) = 10 because 3_1, 3_2, 3_3, 1_1 + 2_1, 1_1 + 2_2, 1_1 + 1_1 + 1_1 are all the m-color cyclic compositions of n = 3 and the total number of parts is 1 + 1 + 1 + 2 + 2 + 3 = 10. We have a(4) = 26 because 4_1, 4_2, 4_3, 4_4, 1_1 + 3_1, 1_1 + 3_2, 1_1 + 3_3, 2_1 + 2_1, 2_1 + 2_2, 2_2 + 2_2, 1_1 + 2_1 + 1_1, 1_1 + 2_2 + 1_1, 1_1 + 1_1 + 1_1 + 1_1 are all the m-color cyclic compositions of n = 4 and the total number of parts is 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 4 = 26.
Links
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math., 31(11) (2000), 1421-1427.
- C. G. Bower, Transforms (2).
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics, 341 (2018), 3209-3226.
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc., S2-7(1) (1909), 263-313.
Formula
a(n) = Sum_{s|n} phi(s)*A088305(n/s) = Sum_{s|n} phi(n/s)*Fibonacci(2*s) for n >= 1. (See Theorem 3.1 in Gibson et al. (2018).)
a(n) ~ (2/(3 - sqrt(5)))^n/sqrt(5) for large n. (See p. 3210 in Gibson et al. (2018).)
G.f.: Sum_{s >= 1} phi(s) * x^s/(1 - 3*x^s + x^(2*s)). (See Eq. (1.2) in Gibson et al. (2018).)
Comments