A308736 Numbers n such that n, n+2, n+4, n+6 are of the form p^2*q where p and q are distinct primes.
2523, 3112819, 5656019, 10132171, 12167825, 16639567, 25302173, 31995475, 35158921, 37334419, 43890719, 44816821, 47715269, 53548223, 55534523, 90526075, 90533525, 127558319, 142929025, 143167073, 144989575, 147182225
Offset: 1
Keywords
Examples
2523 = 3*29*29, 2525 = 5*5*101, 2527 = 7*19*19, 2529 = 3*3*281.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 123 terms from Ray Chandler)
Programs
-
Mathematica
psx = Table[{0}, {7}]; nmax = 150000000; n = 1; lst = {}; While[n < nmax, n++; psx = RotateRight[psx]; psx[[1]] = Sort[Last /@ FactorInteger[n]]; If[Union[{psx[[1]], psx[[3]], psx[[5]], psx[[7]]}] == {{1, 2}}, AppendTo[lst, n - 6]];]; lst
-
Python
from sympy import factorint A308736_list, n, mlist = [], 3, [False]*4 while len(A308736_list) < 100: if mlist[0] and mlist[1] and mlist[2] and mlist[3]: A308736_list.append(n) n += 2 f = factorint(n+6) mlist = mlist[1:] + [(len(f),sum(f.values())) == (2,3)] # Chai Wah Wu, Jun 24 2019, Jan 03 2022.
Comments