cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308778 Central element(s) in the period of the continued fraction expansion of sqrt(n), or 0 if no such element exists, or -1 if n is a square.

Original entry on oeis.org

-1, -1, 0, 1, -1, 0, 2, 1, 1, -1, 0, 3, 2, 1, 2, 1, -1, 0, 4, 3, 2, 2, 4, 3, 1, -1, 0, 5, 2, 1, 2, 5, 1, 2, 4, 1, -1, 0, 6, 4, 3, 2, 2, 5, 2, 2, 6, 5, 1, -1, 0, 7, 2, 1, 6, 2, 2, 4, 1, 7, 2, 2, 6, 1, -1, 0, 8, 7, 4, 4, 2, 7, 2, 5, 1, 1, 4, 2, 4, 7, 1, -1, 0
Offset: 0

Views

Author

Georg Fischer, Jun 24 2019

Keywords

Comments

The continued fraction expansion of sqrt(n) is periodic (where n is no square), and the period splits in two halves which are mirrored around the center. With r = floor(sqrt(n)) the expansion takes one of the forms:
[r; i, j, k, ..., m, m, ..., k, j, i, 2*r] (odd period length) or
[r; i, j, k, ..., m, ..., k, j, i, 2*r] (even period length)
[r; 2*r] (empty symmetric part, for n = r^2 + 1)
This sequence lists the central element(s) m, or 0 for n = r^2 + 1, or -1 for n = r^2.
a(k^2-1) = 1 for k >= 2. - Robert Israel, Nov 04 2019

Examples

			CF(sqrt(2906)) = [53;1,9,1,3,1,3,1,1,14,1,5,2,2,5,1,14,1,1,3,1,3,1,9,1,106], odd period, two central elements, a(2906) = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,m;
      if issqr(n) then return -1
      elif issqr(n-1) then return 0
      fi;
      L:= numtheory:-cfrac(sqrt(n),periodic,quotients);
      m:= nops(L[2]);
      L[2][floor(m/2)]
    end proc:
    map(f, [$0..100]); # Robert Israel, Nov 04 2019
  • Mathematica
    Array[Which[IntegerQ@ Sqrt@ #, -1, IntegerQ@ Sqrt[# - 1], 0, True, #[[Floor[Length[#]/2]]] &@ Last@ ContinuedFraction@ Sqrt@ #] &, 83, 0] (* Michael De Vlieger, Jul 07 2019 *)