cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308780 First element of the periodic part of the continued fraction expansion of sqrt(k), where the period is 2.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 2, 1, 5, 2, 1, 6, 4, 3, 2, 1, 7, 2, 1, 8, 4, 2, 1, 9, 6, 3, 2, 1, 10, 5, 4, 2, 1, 11, 2, 1, 12, 8, 6, 4, 3, 2, 1, 13, 2, 1, 14, 7, 4, 2, 1, 15, 10, 6, 5, 3, 2, 1, 16, 8, 4, 2, 1, 17, 2, 1, 18, 12, 9, 6, 4, 3, 2, 1, 19, 2, 1
Offset: 1

Views

Author

Georg Fischer, Jun 24 2019

Keywords

Examples

			The continued fractions for sqrt(3..8) are:
   3 1;1,2
   4 2 (square)
   5 2;4
   6 2;2,4
   7 2;1,1,1,4
   8 2;1,4
Those for 3, 6 and 8 have a period of 2, therefore the sequence starts with 1, 2, 1.
		

Crossrefs

Programs

  • Maple
    s := proc(n) if not issqr(n) then numtheory[cfrac](sqrt(n), 'periodic', 'quotients')[2]; if nops(%) = 2 then return %[1] fi fi; NULL end:
    seq(s(n), n=1..399); # Peter Luschny, Jul 01 2019
  • Mathematica
    Reap[For[k = 3, k <= 399, k++, If[!IntegerQ[Sqrt[k]], cf = ContinuedFraction[Sqrt[k]]; If[Length[cf[[2]]] == 2, Sow[cf[[2, 1]]]]]]][[2, 1]] (* Jean-François Alcover, May 03 2024 *)
    (* Second program (much simpler): *)
    Table[2 a/b, {a, 1, 20}, {b, Rest@Divisors[2 a]}] // Flatten (* Jean-François Alcover, May 04 2024, after a remark by Kevin Ryde *)