A308792 Primes p such that A001175(p) = (p-1)/7.
2269, 2731, 2969, 3739, 4831, 6091, 6329, 11159, 11789, 13049, 13679, 14281, 14449, 14771, 16871, 19559, 20399, 24179, 26111, 29191, 31039, 33181, 33811, 34511, 34679, 35911, 40111, 41651, 42701, 43961, 49211, 54881, 55259, 55721, 56099, 58129, 60859, 62819, 66809
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k + 1], n] == 1, Return[k]]]; Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 7] == 1, If[pn[p] == (p - 1)/7, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
-
PARI
Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d])))) forprime(p=2, 67000, if(Pisano_for_decomposing_prime(p)==(p-1)/7, print1(p, ", ")))
Comments