A308793 Primes p such that A001175(p) = (p-1)/8.
1009, 3329, 8081, 12401, 15889, 19681, 25601, 25841, 26641, 32321, 33329, 33521, 34369, 36929, 41681, 42929, 47809, 53569, 55249, 64849, 70289, 74209, 76081, 85361, 86209, 87649, 88129, 88801, 90001, 93089, 93329, 97649, 98689, 99089, 100049, 101489, 107441, 117841
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k + 1], n] == 1, Return[k]]]; Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 8] == 1, If[pn[p] == (p - 1)/8, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
-
PARI
Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d])))) forprime(p=2, 118000, if(Pisano_for_decomposing_prime(p)==(p-1)/8, print1(p, ", ")))
Comments