A308797 Primes p such that A001177(p) = (p-1)/4.
61, 109, 149, 269, 389, 401, 701, 809, 821, 1049, 1181, 1249, 1289, 1301, 1361, 1409, 1429, 1721, 1901, 1949, 2141, 2309, 2341, 2381, 2549, 2729, 2741, 2801, 2909, 3049, 3061, 3089, 3109, 3169, 3181, 3221, 3229, 3541, 3701, 3709, 3929, 4001, 4049, 4349, 4421, 4649
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]]; Reap[For[p = 2, p < 6000, p = NextPrime[p], If[Mod[p, 4] == 1, If[pn[p] == (p - 1)/4, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
-
PARI
Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d])))) forprime(p=2, 5000, if(Entry_for_decomposing_prime(p)==(p-1)/4, print1(p, ", ")))
Comments