cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A106535 Numbers k such that the smallest x > 1 for which Fibonacci(x) == 0 mod k is x = k - 1.

Original entry on oeis.org

11, 19, 31, 59, 71, 79, 131, 179, 191, 239, 251, 271, 311, 359, 379, 419, 431, 439, 479, 491, 499, 571, 599, 631, 659, 719, 739, 751, 839, 971, 1019, 1039, 1051, 1091, 1171, 1259, 1319, 1399, 1439, 1451, 1459, 1499, 1531, 1559, 1571, 1619, 1759, 1811, 1831
Offset: 1

Views

Author

Peter K. Pearson (ppearson+att(AT)spamcop.net), May 06 2005

Keywords

Comments

This is a sister sequence to A000057, because this sequence, since {k : A001177(k) = k-1}, might be called a subdiagonal sequence of A001177, and {k : A001177(k) = k+1}, which might be called a superdiagonal sequence of A001177. Sequences A000057 and A106535 are disjoint. Is this sequence the set of all divisors of some family of sequences, like A000057 is? - Art DuPre, Jul 11 2012
Are all members of this sequence prime? Using A069106, any composite members must exceed 89151931. - Robert Israel, Oct 13 2015
From Jianing Song, Jul 02 2019: (Start)
Yes, all terms are primes. See a brief proof below.
Also, if p == 1 (mod 4) then b(p) divides (p-Legendre(p,5))/2. So terms in this sequence are congruent to 11 or 19 modulo 20.
Primes p such that ord(-(3+sqrt(5))/2,p) = p-1, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer. (End)
Comments from Amiram Eldar, Jan 30 2022 (Start)
Sequence A003147, "Primes p with a Fibonacci primitive root", is defined in the paper: Daniel Shanks, Fibonacci primitive roots, Fibonacci Quarterly, Vol. 10, No. 2 (1972), pp. 163-168, and 181.
A second paper on this subject Daniel Shanks and Larry Taylor, An Observation of Fibonacci Primitive Roots, Fibonacci Quarterly, Vol. 11, No. 2 (1973), pp. 159-160,
deals with terms p == 3 (mod 4) of A003147, i.e., the intersection of A003147 and A002145 (or A004767).
It states that if g is a Fibonacci primitive root of a prime p such that p == 3 (mod 4) then g-1 and g-2 are also primitive roots of p.
The first 2000 terms of (A003147 intersect A002145) agree with the present sequence, although the definitions are quite different. Are these two sequences the same? (End)

Crossrefs

Similar sequences that give primes p such that A001177(p) = (p-1)/s: this sequence (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7),A308801 (s=8), A308802 (s=9).

Programs

  • GAP
    Filtered([2..2000], n -> Fibonacci(n-1) mod n = 0 and Filtered( [2..n-2], x -> Fibonacci(x) mod n = 0 ) = [] );
    
  • Maple
    A106535 := proc(n)
            option remember;
            if n = 1 then
                    11;
            else
                    for a from procname(n-1)+1 do
                            if A001177(a) = a-1 then
                                    return a;
                            end if;
                    end do:
            end if;
    end proc: # R. J. Mathar, Jul 09 2012
    # Alternative:
    fmod:= proc(a,b) local A;
      uses LinearAlgebra[Modular];
      A:= Mod(b, <<1,1>|<1,0>>,integer[8]);
      MatrixPower(b,A,a)[1,2];
    end proc:
    filter:= proc(n)
      local cands;
      if fmod(n-1,n) <> 0 then return false fi;
      cands:= map(t -> (n-1)/t, numtheory:-factorset(n-1));
      andmap(c -> (fmod(c,n) > 0), cands);
    end proc:
    select(filter, [$2..10^4]); # Robert Israel, Oct 13 2015
  • Mathematica
    f[n_] := Block[{x = 2}, While[Mod[Fibonacci@ x, n] != 0, x++]; x];Select[Range@ 1860, f@ # == # - 1 &] (* Michael De Vlieger, Oct 13 2015 *)
  • PARI
    isok(n) = {x = 2; while(fibonacci(x) % n, x++); x == n-1;} \\ Michel Marcus, Oct 20 2015

Formula

{n: A001177(n) = n-1}. - R. J. Mathar, Jul 09 2012

Extensions

Corrected by T. D. Noe, Oct 25 2006

A308800 Primes p such that A001177(p) = (p-1)/7.

Original entry on oeis.org

2731, 3739, 4831, 6091, 11159, 13679, 14771, 16871, 19559, 20399, 24179, 26111, 29191, 31039, 33811, 34511, 34679, 35911, 40111, 41651, 49211, 55259, 56099, 60859, 62819, 69539, 71191, 71359, 71471, 73291, 74831, 85751, 87991, 96979, 97231, 97931, 104959, 108179
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/7, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 7. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 0 | 78
4 | 4 | 609
5 | 36 | 4777
6 | 347 | 39210
7 | 2801 | 332136
8 | 24291 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), this sequence (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 7] == 1, If[pn[p] == (p - 1)/7, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 109000, if(Entry_for_decomposing_prime(p)==(p-1)/7, print1(p, ", ")))

A308795 Primes p such that A001177(p) = (p-1)/2.

Original entry on oeis.org

29, 41, 101, 181, 229, 241, 349, 409, 449, 509, 569, 601, 641, 929, 941, 1021, 1061, 1109, 1129, 1201, 1229, 1321, 1481, 1489, 1549, 1609, 1621, 1669, 1709, 1741, 1789, 1801, 1861, 1889, 2029, 2069, 2129, 2609, 2621, 2861, 3209, 3301, 3361, 3389, 3449, 3461, 3581
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/2, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 2. For even s, all terms are congruent to 1 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 15 | 78
4 | 115 | 609
5 | 839 | 4777
6 | 6913 | 39210
7 | 58891 | 332136
8 | 510784 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), this sequence (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 3600, p = NextPrime[p], If[pn[p] == (p - 1)/2, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 3600, if(Entry_for_decomposing_prime(p)==(p-1)/2, print1(p, ", ")))

A308796 Primes p such that A001177(p) = (p-1)/3.

Original entry on oeis.org

139, 151, 331, 619, 811, 1231, 1279, 1291, 1471, 1579, 1699, 1999, 2239, 2251, 2371, 2659, 3271, 3331, 3391, 3499, 3631, 3919, 4051, 4159, 4231, 4759, 5059, 5839, 6079, 6619, 6691, 6991, 7219, 7639, 8059, 8599, 8731, 8971, 9151, 9319, 9679, 9739, 10099, 10459, 10771
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/3, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 3. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 5 | 78
4 | 42 | 609
5 | 312 | 4777
6 | 2490 | 39210
7 | 20958 | 332136
8 | 181493 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), this sequence (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 10000, p = NextPrime[p], If[Mod[p, 3] == 1, If[pn[p] == (p - 1)/3, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 11000, if(Entry_for_decomposing_prime(p)==(p-1)/3, print1(p, ", ")))

A308798 Primes p such that A001177(p) = (p-1)/5.

Original entry on oeis.org

211, 691, 991, 1031, 1151, 1511, 1871, 1951, 2591, 3251, 3851, 4391, 4651, 4691, 4751, 4871, 5531, 5591, 6011, 6211, 6271, 6491, 7211, 7451, 8011, 8171, 8831, 9011, 9091, 9371, 9431, 9931, 10391, 10531, 10691, 10891, 11071, 12011, 12071, 12911, 14051, 14251, 14591
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/5, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 5. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 3 | 78
4 | 32 | 609
5 | 192 | 4777
6 | 1521 | 39210
7 | 12542 | 332136
8 | 109034 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), this sequence (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 15000, p = NextPrime[p], If[Mod[p, 5] == 1, If[pn[p] == (p - 1)/5, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 15000, if(Entry_for_decomposing_prime(p)==(p-1)/5, print1(p, ", ")))

A308799 Primes p such that A001177(p) = (p-1)/6.

Original entry on oeis.org

541, 709, 2281, 2389, 2689, 4861, 5869, 7069, 8089, 8761, 8821, 8929, 9049, 9601, 10009, 10321, 10789, 12421, 12781, 13309, 13681, 14341, 14869, 14929, 16981, 19309, 19429, 19501, 19609, 20389, 21841, 22741, 23629, 24181, 24481, 25189, 26821, 27109, 27361, 27961
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/6, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 6. For even s, all terms are congruent to 1 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 2 | 78
4 | 14 | 609
5 | 147 | 4777
6 | 1216 | 39210
7 | 10477 | 332136
8 | 90720 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), this sequence (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 28000, p = NextPrime[p], If[Mod[p, 6] == 1, If[pn[p] == (p - 1)/6, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 28000, if(Entry_for_decomposing_prime(p)==(p-1)/6, print1(p, ", ")))

A308801 Primes p such that A001177(p) = (p-1)/8.

Original entry on oeis.org

89, 761, 769, 1009, 2089, 2441, 3881, 4201, 4289, 4729, 5209, 5441, 5849, 6521, 6761, 7369, 7841, 8009, 8081, 9929, 10601, 11489, 11689, 11801, 11969, 12401, 12409, 12569, 12889, 14009, 14249, 15889, 17449, 17609, 17881, 17929, 18121, 18169, 20201, 20249, 21929
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/8, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 8.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 3 | 78
4 | 20 | 609
5 | 154 | 4777
6 | 1278 | 39210
7 | 11063 | 332136
8 | 95613 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), this sequence (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 22000, p = NextPrime[p], If[Mod[p, 8] == 1, If[pn[p] == (p - 1)/8, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 22000, if(Entry_for_decomposing_prime(p)==(p-1)/8, print1(p, ", ")))

A308802 Primes p such that A001177(p) = (p-1)/9.

Original entry on oeis.org

199, 919, 6679, 12979, 17011, 17659, 20431, 23059, 23599, 24391, 24859, 39079, 39439, 43399, 48619, 53479, 54091, 62011, 62191, 67411, 69499, 72019, 72091, 77419, 81019, 82279, 91099, 91459, 92179, 97579, 98731, 102259, 103231, 105211, 108271, 111439, 114679, 125119
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/9, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 9. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 2 | 78
4 | 3 | 609
5 | 31 | 4777
6 | 274 | 39210
7 | 2293 | 332136
8 | 20097 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), this sequence (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 9] == 1, If[pn[p] == (p - 1)/9, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 126000, if(Entry_for_decomposing_prime(p)==(p-1)/9, print1(p, ", ")))
Showing 1-8 of 8 results.