cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A214029 The union of the disjoint prime sequences A000057 and A106535.

Original entry on oeis.org

2, 3, 7, 11, 19, 23, 31, 43, 59, 67, 71, 79, 83, 103, 127, 131, 163, 167, 179, 191, 223, 227, 239, 251, 271, 283, 311, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 571, 587, 599, 607, 631, 643, 647, 659, 683, 719, 727
Offset: 1

Views

Author

Art DuPre, Jul 09 2012

Keywords

Comments

Just as A000057 can be generated by looking at the subscripts of the sequence A001177 which are one less than their values, A106535 can be generated by looking at the subscripts of the sequence A001177 which are one greater than their values.
It is a surprising fact that these two sequences A000057 and A106535 are disjoint. The also have approximately the same density, if these densities exist.
It would be interesting to be able to interpret the relation of this prime sequence to the entire set of Fibonacci sequences, i.e., those sequences satisfying f(n+2) = f(n+1) + f(n) with various initial conditions.

Crossrefs

Programs

  • PARI
    {a(n,p) = local(t, m=1,s=[n]); if( n<2, 0, while( 1,
       s=concat(s,p);
    t=contfracpnqn(concat(s,n));
       t = contfrac(n*t[1,1]/t[2,1]);
       if(t[1]
    				

A001177 Fibonacci entry points: a(n) = least k >= 1 such that n divides Fibonacci number F_k (=A000045(k)).

Original entry on oeis.org

1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30, 8, 30, 24, 12, 25, 21, 36, 24, 14, 60, 30, 24, 20, 9, 40, 12, 19, 18, 28, 30, 20, 24, 44, 30, 60, 24, 16, 12, 56, 75, 36, 42, 27, 36, 10, 24, 36, 42, 58, 60, 15, 30, 24, 48, 35, 60, 68, 18, 24, 120
Offset: 1

Views

Author

Keywords

Comments

In the formula, the relation a(p^e) = p^(e-1)*a(p) is called Wall's conjecture, which has been verified for primes up to 10^14. See A060305. Primes for which this relation fails are called Wall-Sun-Sun primes. - T. D. Noe, Mar 03 2009
All solutions to F_m == 0 (mod n) are given by m == 0 (mod a(n)). For a proof see, e.g., Vajda, p. 73. [Old comment changed by Wolfdieter Lang, Jan 19 2015]
If p is a prime of the form 10n +- 1 then a(p) is a divisor of p-1. If q is a prime of the form 10n +- 3 then a(q) is a divisor of q+1. - Robert G. Wilson v, Jul 07 2007
Definition 1 in Riasat (2011) calls this k(n), or sometimes just k. Corollary 1 in the same paper, "every positive integer divides infinitely many Fibonacci numbers," demonstrates that this sequence is infinite. - Alonso del Arte, Jul 27 2013
If p is a prime then a(p) <= p+1. This is because if p is a prime then exactly one of the following Fibonacci numbers is a multiple of p: F(p-1), F(p) or F(p+1). - Dmitry Kamenetsky, Jul 23 2015
From Renault 1996:
1. a(lcm(n,m)) = lcm(a(n), a(m)).
2. if n|m then a(n)|a(m).
3. if m has prime factorization m=p1^e1 * p2^e2 * ... * pn^en then a(m) = lcm(a(p1^e1), a(p2^e2), ..., a(pn^en)). - Dmitry Kamenetsky, Jul 23 2015
a(n)=n if and only if n=5^k or n=12*5^k for some k >= 0 (see Marques 2012). - Dmitry Kamenetsky, Aug 08 2015
Every positive integer (except 2) eventually appears in this sequence. This is because every Fibonacci number bigger than 1 (except Fibonacci(6)=8 and Fibonacci(12)=144) has at least one prime factor that is not a factor of any earlier Fibonacci number (see Knott reference). Let f(n) be such a prime factor for Fibonacci(n); then a(f(n))=n. - Dmitry Kamenetsky, Aug 08 2015
We can reconstruct the Fibonacci numbers from this sequence using the formula Fibonacci(n+2) = 1 + Sum_{i: a(i) <= n} phi(i)*floor(n/a(i)), where phi(n) is Euler's totient function A000010 (see the Stroinski link). For example F(6) = 1 + phi(1)*floor(4/a(1)) + phi(2)*floor(4/a(2)) + phi(3)*floor(4/a(4)) = 1 + 1*4 + 1*1 + 2*1 = 8. - Peter Bala, Sep 10 2015
Conjecture: Sum_{d|n} phi(d)*a(d) = A232656(n). - Logan J. Kleinwaks, Oct 28 2017
a(F_m) = m for all m > 1. Indeed, let (b(j)) be defined by b(1)=b(2)=1, and b(j+2) = (b(j) + b(j+1)) mod n. Then a(n) equals the index of the first occurrence of 0 in (b(j)). Example: if n=4 then b = A079343 = 1,1,2,3,1,0,1,1,..., so a(4)=6. If n is a Fibonacci number n=F_m, then obviously a(n)=m. Note that this gives a simple proof of the fact that all integers larger than 2 occur in (a(n)). - Michel Dekking, Nov 10 2017

Examples

			a(4) = 6 because the smallest Fibonacci number that 4 divides is F(6) = 8.
a(5) = 5 because the smallest Fibonacci number that 5 divides is F(5) = 5.
a(6) = 12 because the smallest Fibonacci number that 6 divides is F(12) = 144.
From _Wolfdieter Lang_, Jan 19 2015: (Start)
a(2) = 3, hence 2 | F(m) iff m = 2*k, for k >= 0;
a(3) = 4, hence 3 | F(m) iff m = 4*k, for k >= 0;
etc. See a comment above with the Vajda reference.
(End)
		

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 25.
  • B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers. Report ORNL-4261, Oak Ridge National Laboratory, Oak Ridge, Tennessee, June 1968.
  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Afterword by Herbert A. Hauptman, Nobel Laureate, 2. 'The Minor Modulus m(n)', Prometheus Books, NY, 2007, page 329-342.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
  • N. N. Vorob'ev, Fibonacci numbers, Blaisdell, NY, 1961.

Crossrefs

Cf. A000045, A001175, A001176, A060383, A001602. First occurrence of k is given in A131401. A233281 gives such k that a(k) is a prime.
From Antti Karttunen, Dec 21 2013: (Start)
Various derived sequences:
A047930(n) = A000045(a(n)).
A037943(n) = A000045(a(n))/n.
A217036(n) = A000045(a(n)-1) mod n.
A132632(n) = a(n^2).
A132633(n) = a(n^3).
A214528(n) = a(n!).
A215011(n) = a(A000217(n)).
A215453(n) = a(n^n).
Analogous sequence for the tribonacci numbers: A046737, for Lucas numbers: A223486, for Pell numbers: A214028.

Programs

  • Haskell
    a001177 n = head [k | k <- [1..], a000045 k `mod` n == 0]
    -- Reinhard Zumkeller, Jan 15 2014
  • Maple
    A001177 := proc(n)
            for k from 1 do
                    if combinat[fibonacci](k) mod n = 0 then
                            return k;
                    end if;
            end do:
    end proc: # R. J. Mathar, Jul 09 2012
    N:= 1000: # to get a(1) to a(N)
    L:= ilcm($1..N):
    count:= 0:
    for n from 1 while count < N do
      fn:= igcd(L,combinat:-fibonacci(n));
      divs:= select(`<=`,numtheory:-divisors(fn),N);
      for d in divs do if not assigned(A[d]) then count:= count+1; A[d]:= n fi od:
    od:
    seq(A[n],n=1..N); # Robert Israel, Oct 14 2015
  • Mathematica
    fibEntry[n_] := Block[{k = 1}, While[ Mod[ Fibonacci@k, n] != 0, k++ ]; k]; Array[fibEntry, 74] (* Robert G. Wilson v, Jul 04 2007 *)
  • PARI
    a(n)=if(n<0,0,s=1;while(fibonacci(s)%n>0,s++);s) \\ Benoit Cloitre, Feb 10 2007
    
  • PARI
    ap(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1], for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k
    a(n)=if(n==1,return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i,1]>1e14,ap(f[i,1]^f[i,2]), ap(f[i,1])*f[i,1]^(f[i,2]-1))); if(f[1,1]==2&&f[1,2]>1, v[1]=3<Charles R Greathouse IV, May 08 2017
    
  • Scheme
    (define (A001177 n) (let loop ((k 1)) (cond ((zero? (modulo (A000045 k) n)) k) (else (loop (+ k 1)))))) ;; Antti Karttunen, Dec 21 2013
    

Formula

A001175(n) = A001176(n) * a(n) for n >= 1.
a(n) = n if and only if n is of form 5^k or 12*5^k (proved in Marques paper), a(n) = n - 1 if and only if n is in A106535, a(n) = n + 1 if and only if n is in A000057, a(n) = n + 5 if and only if n is in 5*A000057, ... - Benoit Cloitre, Feb 10 2007
a(1) = 1, a(2) = 3, a(4) = 6 and for e > 2, a(2^e) = 3*2^(e-2); a(5^e) = 5^e; and if p is an odd prime not 5, then a(p^e) = p^max(0, e-s)*a(p) where s = valuation(A000045(a(p)), p) (Wall's conjecture states that s = 1 for all p). If (m, n) = 1 then a(m*n) = lcm(a(m), a(n)). See Posamentier & Lahmann. - Robert G. Wilson v, Jul 07 2007; corrected by Max Alekseyev, Oct 19 2007, Jun 24 2011
Apparently a(n) = A213648(n) + 1 for n >= 2. - Art DuPre, Jul 01 2012
a(n) < n^2. [Vorob'ev]. - Zak Seidov, Jan 07 2016
a(n) < n^2 - 3n + 6. - Jinyuan Wang, Oct 13 2018
a(n) <= 2n [Salle]. - Jon Maiga, Apr 25 2019

Extensions

Definition corrected by Wolfdieter Lang, Jan 19 2015

A000057 Primes dividing all Fibonacci sequences.

Original entry on oeis.org

2, 3, 7, 23, 43, 67, 83, 103, 127, 163, 167, 223, 227, 283, 367, 383, 443, 463, 467, 487, 503, 523, 547, 587, 607, 643, 647, 683, 727, 787, 823, 827, 863, 883, 887, 907, 947, 983, 1063, 1123, 1163, 1187, 1283, 1303, 1327, 1367, 1423, 1447, 1487, 1543, 1567, 1583
Offset: 1

Views

Author

Keywords

Comments

Here a Fibonacci sequence is a sequence which begins with any two integers and continues using the rule s(n+2) = s(n+1) + s(n). These primes divide at least one number in each such sequence. - Don Reble, Dec 15 2006
Primes p such that the smallest positive m for which Fibonacci(m) == 0 (mod p) is m = p + 1. In other words, the n-th prime p is in this sequence iff A001602(n) = p + 1. - Max Alekseyev, Nov 23 2007
Cubre and Rouse comment that this sequence is not known to be infinite. - Charles R Greathouse IV, Jan 02 2013
Number of terms up to 10^n: 3, 7, 38, 249, 1894, 15456, 130824, 1134404, 10007875, 89562047, .... - Charles R Greathouse IV, Nov 19 2014
These are also the fixed points of sequence A213648 which gives the minimal number of 1's such that n*[n; 1,..., 1, n] = [x; ..., x], where [...] denotes simple continued fractions. - M. F. Hasler, Sep 15 2015
It appears that for n >= 2, all first differences are congruent to 0 (mod 4). - Christopher Hohl, Dec 28 2018
The comment above is equivalent to a(n) == 3 (mod 4) for n >= 2. This is indeed correct. Actually it can be proved that a(n) == 3, 7 (mod 20) for n >= 2. Let p != 2, 5 be a prime, then: A001175(p) divides (p - 1)/2 if p == 1, 9 (mod 20); p - 1 if p == 11, 19 (mod 20); (p + 1)/2 if p == 13, 17 (mod 20). So the remaining cases are p == 3, 7 (mod 20). - Jianing Song, Dec 29 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A064414.

Programs

  • Mathematica
    Select[Prime[Range[1000]], Function[p, a=0; b=1; n=1; While[b != 0, t=b; b = Mod[(a+b), p]; a=t; n++]; n>p]] (* Jean-François Alcover, Aug 05 2018, after Charles R Greathouse IV *)
  • PARI
    select(p->my(a=0,b=1,n=1,t);while(b,t=b;b=(a+b)%p; a=t; n++); n>p, primes(1000)) \\ Charles R Greathouse IV, Jan 02 2013
    
  • PARI
    is(p)=fordiv(p-1,d,if(((Mod([1,1;1,0],p))^d)[1,2]==0,return(0)));fordiv(p+1,d,if(((Mod([1,1;1,0],p))^d)[1,2]==0,return(d==p+1 && isprime(p)))) \\ Charles R Greathouse IV, Jan 02 2013
    
  • PARI
    is(p)=if((p-2)%5>1, return(0)); my(f=factor(p+1)); for(i=1, #f~, if((Mod([1, 1; 1, 0], p)^((p+1)/f[i, 1]))[1, 2]==0, return(0))); isprime(p) \\ Charles R Greathouse IV, Nov 19 2014

Extensions

More terms from Don Reble, Nov 14 2006

A003147 Primes p with a Fibonacci primitive root g, i.e., such that g^2 = g + 1 (mod p).

Original entry on oeis.org

5, 11, 19, 31, 41, 59, 61, 71, 79, 109, 131, 149, 179, 191, 239, 241, 251, 269, 271, 311, 359, 379, 389, 409, 419, 431, 439, 449, 479, 491, 499, 569, 571, 599, 601, 631, 641, 659, 701, 719, 739, 751, 821, 839, 929, 971, 1019, 1039, 1051, 1091, 1129, 1171, 1181, 1201, 1259, 1301
Offset: 1

Views

Author

Keywords

Comments

Primes p with a primitive root g such that g^2 = g + 1 (mod p).
Not the same as primes with a Fibonacci number as primitive root; cf. A083701. - Jonathan Sondow, Feb 17 2013
For all except the initial term 5, these are numbers such that the Pisano period equals 1 less than the Pisano number, i.e., where A001175(n) = n-1. - Matthew Goers, Sep 20 2013
As shown in the paper by Brison, these are also the primes p such that there is a Fibonacci-type sequence (mod p) that begins with (1,b) and encounters all numbers less than p in the first p-1 iterations (for some b). - T. D. Noe, Feb 26 2014
Shanks (1972) conjectured that the relative asymptotic density of this sequence in the sequence of primes is 27*c/38 = 0.2657054465..., where c is Artin's constant (A005596). The conjecture was proved on the assumption of a generalized Riemann hypothesis by Lenstra (1977) and Sander (1990). - Amiram Eldar, Jan 22 2022

Examples

			3 is a primitive root mod 5, and 3^2 = 3 + 1 mod 5, so 5 is a member. - _Jonathan Sondow_, Feb 17 2013
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A038872.
See also A106535.

Programs

  • Maple
    filter:=proc(n) local g,r;
    if not isprime(n) then return false fi;
    r:= [msolve(g^2 -g - 1, n)][1];
    numtheory:-order(rhs(op(r)),n) = n-1
    end proc:
    select(filter, [5,seq(seq(10*i+j,j=[1,9]),i=1..1000)]); # Robert Israel, May 22 2015
  • Mathematica
    okQ[p_] := AnyTrue[PrimitiveRootList[p], Mod[#^2, p] == Mod[#+1, p]&]; Select[Prime[Range[300]], okQ] (* Jean-François Alcover, Jan 04 2016 *)
  • PARI
    is(n)=if(kronecker(5,n)<1||!isprime(n), return(n==5)); my(s=sqrt(Mod(5,n))); znorder((1+s)/2)==n-1 || znorder((1-s)/2)==n-1 \\ Charles R Greathouse IV, May 22 2015

Extensions

More terms from David W. Wilson
Cross-reference from Charles R Greathouse IV, Nov 05 2009
Definition clarified by M. F. Hasler, Jun 05 2018

A001578 Smallest primitive prime factor of Fibonacci number F(n), or 1 if F(n) has no primitive prime factor.

Original entry on oeis.org

1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 37, 41, 421, 199, 28657, 23, 3001, 521, 53, 281, 514229, 31, 557, 2207, 19801, 3571, 141961, 107, 73, 9349, 135721, 2161, 2789, 211, 433494437, 43, 109441, 139, 2971215073, 1103, 97, 101
Offset: 1

Views

Author

Keywords

Comments

A prime factor of F(n) is called primitive if it does not divide F(r) for any r < n.
A Fibonacci number can have more than one primitive factor; the primitive factors of F(19) are 37 and 113.
From Robert Israel, Oct 13 2015: (Start)
Since gcd(F(n),F(k)) = F(gcd(n,k)), the non-primitive prime factors of F(n) are factors of F(k) for some proper divisors k of n.
Since prime p divides F(p-1) if p == 1 or 4 (mod 5), F(p+1) if p == 2 or 3 mod 5, F(p) if p = 5, we have a(n) >= n-1 if a(n) > 1.
a(n) = n-1 iff n=2 or n-1 is in A000057.
a(n) = n+1 iff n+1 is a prime in A106535. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000045, A000057, A106535, A086597 (number of primitive prime factors in F(n)), A061488 (1's omitted), A262341 (largest primitive prime factor of F(n)).

Programs

  • Maple
    for n from 1 to 350 do
      f:= combinat:-fibonacci(n);
      if not isprime(n) then
        for k in map(t -> n/t, numtheory:-factorset(n)) do
           fk:= combinat:-fibonacci(k);
           g:= igcd(f,fk);
           while g > 1 do
             f:= f/g;
             g:= igcd(f,fk);
           od
        od
      fi;
      if f = 1 then A[n]:= 1; next fi;
      F:= map(t -> t[1],ifactors(f,easy)[2]);
      p:= select(type, F,integer);
      if nops(p) >= 1 then A[n]:= min(p); next fi;
      A[n]:= min(numtheory:-factorset(f));
    od:
    seq(A[i],i=1..350); # Robert Israel, Oct 13 2015
  • Mathematica
    prms={}; Table[f=First/@FactorInteger[Fibonacci[n]]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {n, 50}]
  • PARI
    a(n) = {my(v = vector(n, k, fibonacci(k))); my(vf = vector(n, k, factor(v[k])[,1]~)); for (k=1, n-1, vf[n] = setminus(vf[n], vf[k]);); if (#vf[n], vecmin(vf[n]), 1);} \\ Michel Marcus, May 11 2021

Formula

a(n) = 1 if and only if n = 1, 2, 6, or 12, by Carmichael's theorem. - Jonathan Sondow, Dec 07 2017

Extensions

Edited by T. D. Noe, Apr 15 2004
Definition clarified at the suggestion of Joerg Arndt by Jonathan Sondow, Oct 13 2015

A308800 Primes p such that A001177(p) = (p-1)/7.

Original entry on oeis.org

2731, 3739, 4831, 6091, 11159, 13679, 14771, 16871, 19559, 20399, 24179, 26111, 29191, 31039, 33811, 34511, 34679, 35911, 40111, 41651, 49211, 55259, 56099, 60859, 62819, 69539, 71191, 71359, 71471, 73291, 74831, 85751, 87991, 96979, 97231, 97931, 104959, 108179
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/7, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 7. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 0 | 78
4 | 4 | 609
5 | 36 | 4777
6 | 347 | 39210
7 | 2801 | 332136
8 | 24291 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), this sequence (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 7] == 1, If[pn[p] == (p - 1)/7, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 109000, if(Entry_for_decomposing_prime(p)==(p-1)/7, print1(p, ", ")))

A308795 Primes p such that A001177(p) = (p-1)/2.

Original entry on oeis.org

29, 41, 101, 181, 229, 241, 349, 409, 449, 509, 569, 601, 641, 929, 941, 1021, 1061, 1109, 1129, 1201, 1229, 1321, 1481, 1489, 1549, 1609, 1621, 1669, 1709, 1741, 1789, 1801, 1861, 1889, 2029, 2069, 2129, 2609, 2621, 2861, 3209, 3301, 3361, 3389, 3449, 3461, 3581
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/2, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 2. For even s, all terms are congruent to 1 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 15 | 78
4 | 115 | 609
5 | 839 | 4777
6 | 6913 | 39210
7 | 58891 | 332136
8 | 510784 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), this sequence (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 3600, p = NextPrime[p], If[pn[p] == (p - 1)/2, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 3600, if(Entry_for_decomposing_prime(p)==(p-1)/2, print1(p, ", ")))

A308796 Primes p such that A001177(p) = (p-1)/3.

Original entry on oeis.org

139, 151, 331, 619, 811, 1231, 1279, 1291, 1471, 1579, 1699, 1999, 2239, 2251, 2371, 2659, 3271, 3331, 3391, 3499, 3631, 3919, 4051, 4159, 4231, 4759, 5059, 5839, 6079, 6619, 6691, 6991, 7219, 7639, 8059, 8599, 8731, 8971, 9151, 9319, 9679, 9739, 10099, 10459, 10771
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/3, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 3. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 5 | 78
4 | 42 | 609
5 | 312 | 4777
6 | 2490 | 39210
7 | 20958 | 332136
8 | 181493 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), this sequence (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 10000, p = NextPrime[p], If[Mod[p, 3] == 1, If[pn[p] == (p - 1)/3, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 11000, if(Entry_for_decomposing_prime(p)==(p-1)/3, print1(p, ", ")))

A308797 Primes p such that A001177(p) = (p-1)/4.

Original entry on oeis.org

61, 109, 149, 269, 389, 401, 701, 809, 821, 1049, 1181, 1249, 1289, 1301, 1361, 1409, 1429, 1721, 1901, 1949, 2141, 2309, 2341, 2381, 2549, 2729, 2741, 2801, 2909, 3049, 3061, 3089, 3109, 3169, 3181, 3221, 3229, 3541, 3701, 3709, 3929, 4001, 4049, 4349, 4421, 4649
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/4, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 9 | 78
4 | 81 | 609
5 | 651 | 4777
6 | 5268 | 39210
7 | 44188 | 332136
8 | 383224 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), this sequence (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 6000, p = NextPrime[p], If[Mod[p, 4] == 1, If[pn[p] == (p - 1)/4, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 5000, if(Entry_for_decomposing_prime(p)==(p-1)/4, print1(p, ", ")))

A308798 Primes p such that A001177(p) = (p-1)/5.

Original entry on oeis.org

211, 691, 991, 1031, 1151, 1511, 1871, 1951, 2591, 3251, 3851, 4391, 4651, 4691, 4751, 4871, 5531, 5591, 6011, 6211, 6271, 6491, 7211, 7451, 8011, 8171, 8831, 9011, 9091, 9371, 9431, 9931, 10391, 10531, 10691, 10891, 11071, 12011, 12071, 12911, 14051, 14251, 14591
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/5, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 5. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 3 | 78
4 | 32 | 609
5 | 192 | 4777
6 | 1521 | 39210
7 | 12542 | 332136
8 | 109034 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), this sequence (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 15000, p = NextPrime[p], If[Mod[p, 5] == 1, If[pn[p] == (p - 1)/5, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 15000, if(Entry_for_decomposing_prime(p)==(p-1)/5, print1(p, ", ")))
Showing 1-10 of 15 results. Next