cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 76 results. Next

A308800 Primes p such that A001177(p) = (p-1)/7.

Original entry on oeis.org

2731, 3739, 4831, 6091, 11159, 13679, 14771, 16871, 19559, 20399, 24179, 26111, 29191, 31039, 33811, 34511, 34679, 35911, 40111, 41651, 49211, 55259, 56099, 60859, 62819, 69539, 71191, 71359, 71471, 73291, 74831, 85751, 87991, 96979, 97231, 97931, 104959, 108179
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/7, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 7. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 0 | 78
4 | 4 | 609
5 | 36 | 4777
6 | 347 | 39210
7 | 2801 | 332136
8 | 24291 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), this sequence (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 7] == 1, If[pn[p] == (p - 1)/7, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 109000, if(Entry_for_decomposing_prime(p)==(p-1)/7, print1(p, ", ")))

A308795 Primes p such that A001177(p) = (p-1)/2.

Original entry on oeis.org

29, 41, 101, 181, 229, 241, 349, 409, 449, 509, 569, 601, 641, 929, 941, 1021, 1061, 1109, 1129, 1201, 1229, 1321, 1481, 1489, 1549, 1609, 1621, 1669, 1709, 1741, 1789, 1801, 1861, 1889, 2029, 2069, 2129, 2609, 2621, 2861, 3209, 3301, 3361, 3389, 3449, 3461, 3581
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/2, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 2. For even s, all terms are congruent to 1 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 15 | 78
4 | 115 | 609
5 | 839 | 4777
6 | 6913 | 39210
7 | 58891 | 332136
8 | 510784 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), this sequence (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 3600, p = NextPrime[p], If[pn[p] == (p - 1)/2, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 3600, if(Entry_for_decomposing_prime(p)==(p-1)/2, print1(p, ", ")))

A308796 Primes p such that A001177(p) = (p-1)/3.

Original entry on oeis.org

139, 151, 331, 619, 811, 1231, 1279, 1291, 1471, 1579, 1699, 1999, 2239, 2251, 2371, 2659, 3271, 3331, 3391, 3499, 3631, 3919, 4051, 4159, 4231, 4759, 5059, 5839, 6079, 6619, 6691, 6991, 7219, 7639, 8059, 8599, 8731, 8971, 9151, 9319, 9679, 9739, 10099, 10459, 10771
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/3, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 3. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 5 | 78
4 | 42 | 609
5 | 312 | 4777
6 | 2490 | 39210
7 | 20958 | 332136
8 | 181493 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), this sequence (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 10000, p = NextPrime[p], If[Mod[p, 3] == 1, If[pn[p] == (p - 1)/3, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 11000, if(Entry_for_decomposing_prime(p)==(p-1)/3, print1(p, ", ")))

A308797 Primes p such that A001177(p) = (p-1)/4.

Original entry on oeis.org

61, 109, 149, 269, 389, 401, 701, 809, 821, 1049, 1181, 1249, 1289, 1301, 1361, 1409, 1429, 1721, 1901, 1949, 2141, 2309, 2341, 2381, 2549, 2729, 2741, 2801, 2909, 3049, 3061, 3089, 3109, 3169, 3181, 3221, 3229, 3541, 3701, 3709, 3929, 4001, 4049, 4349, 4421, 4649
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/4, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 9 | 78
4 | 81 | 609
5 | 651 | 4777
6 | 5268 | 39210
7 | 44188 | 332136
8 | 383224 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), this sequence (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 6000, p = NextPrime[p], If[Mod[p, 4] == 1, If[pn[p] == (p - 1)/4, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 5000, if(Entry_for_decomposing_prime(p)==(p-1)/4, print1(p, ", ")))

A308798 Primes p such that A001177(p) = (p-1)/5.

Original entry on oeis.org

211, 691, 991, 1031, 1151, 1511, 1871, 1951, 2591, 3251, 3851, 4391, 4651, 4691, 4751, 4871, 5531, 5591, 6011, 6211, 6271, 6491, 7211, 7451, 8011, 8171, 8831, 9011, 9091, 9371, 9431, 9931, 10391, 10531, 10691, 10891, 11071, 12011, 12071, 12911, 14051, 14251, 14591
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/5, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 5. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 3 | 78
4 | 32 | 609
5 | 192 | 4777
6 | 1521 | 39210
7 | 12542 | 332136
8 | 109034 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), this sequence (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 15000, p = NextPrime[p], If[Mod[p, 5] == 1, If[pn[p] == (p - 1)/5, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 15000, if(Entry_for_decomposing_prime(p)==(p-1)/5, print1(p, ", ")))

A308799 Primes p such that A001177(p) = (p-1)/6.

Original entry on oeis.org

541, 709, 2281, 2389, 2689, 4861, 5869, 7069, 8089, 8761, 8821, 8929, 9049, 9601, 10009, 10321, 10789, 12421, 12781, 13309, 13681, 14341, 14869, 14929, 16981, 19309, 19429, 19501, 19609, 20389, 21841, 22741, 23629, 24181, 24481, 25189, 26821, 27109, 27361, 27961
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/6, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 6. For even s, all terms are congruent to 1 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 2 | 78
4 | 14 | 609
5 | 147 | 4777
6 | 1216 | 39210
7 | 10477 | 332136
8 | 90720 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), this sequence (s=6), A308800 (s=7), A308801 (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 28000, p = NextPrime[p], If[Mod[p, 6] == 1, If[pn[p] == (p - 1)/6, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 28000, if(Entry_for_decomposing_prime(p)==(p-1)/6, print1(p, ", ")))

A308801 Primes p such that A001177(p) = (p-1)/8.

Original entry on oeis.org

89, 761, 769, 1009, 2089, 2441, 3881, 4201, 4289, 4729, 5209, 5441, 5849, 6521, 6761, 7369, 7841, 8009, 8081, 9929, 10601, 11489, 11689, 11801, 11969, 12401, 12409, 12569, 12889, 14009, 14249, 15889, 17449, 17609, 17881, 17929, 18121, 18169, 20201, 20249, 21929
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/8, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 8.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 3 | 78
4 | 20 | 609
5 | 154 | 4777
6 | 1278 | 39210
7 | 11063 | 332136
8 | 95613 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), this sequence (s=8), A308802 (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 22000, p = NextPrime[p], If[Mod[p, 8] == 1, If[pn[p] == (p - 1)/8, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 22000, if(Entry_for_decomposing_prime(p)==(p-1)/8, print1(p, ", ")))

A308802 Primes p such that A001177(p) = (p-1)/9.

Original entry on oeis.org

199, 919, 6679, 12979, 17011, 17659, 20431, 23059, 23599, 24391, 24859, 39079, 39439, 43399, 48619, 53479, 54091, 62011, 62191, 67411, 69499, 72019, 72091, 77419, 81019, 82279, 91099, 91459, 92179, 97579, 98731, 102259, 103231, 105211, 108271, 111439, 114679, 125119
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord(-(3+sqrt(5))/2,p) = (p-1)/9, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the entry point of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), (-u^2)^(p+1) == 1 (mod p), so the entry point of {T(n)} modulo p is equal to (p+1)/s, s = 1, 2, 3, 4, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 9. For odd s, all terms are congruent to 3 modulo 4.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 2 | 78
4 | 3 | 609
5 | 31 | 4777
6 | 274 | 39210
7 | 2293 | 332136
8 | 20097 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A106535 (s=1), A308795 (s=2), A308796 (s=3), A308797 (s=4), A308798 (s=5), A308799 (s=6), A308800 (s=7), A308801 (s=8), this sequence (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]];
    Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 9] == 1, If[pn[p] == (p - 1)/9, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d]))))
    forprime(p=2, 126000, if(Entry_for_decomposing_prime(p)==(p-1)/9, print1(p, ", ")))

A233283 Record values in partial LCM-products (A233287) of Fibonacci entry points (A001177).

Original entry on oeis.org

1, 3, 12, 60, 120, 840, 2520, 12600, 239400, 2633400, 5266800, 15800400, 458211600, 7789597200, 288215096400, 3746796253200, 26227573772400, 131137868862000, 1049102950896000, 24129367870608000, 1906220061778032000, 78155022532899312000, 6955797005428038768000
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2013

Keywords

Comments

Conjecture: sequence gives the positions of records in A233284.
a(n+1)/a(n) = 3,4,5,2,7,3,5,19,11,2,3,29,17,37,13,7,5,8,23,79... - Ralf Stephan, Dec 17 2013

Crossrefs

Programs

Formula

a(n) = A233287(A233282(n)).

A120256 a(n) = number of terms in the n-th row of A120255(n) = number of terms in A001177 equal to n.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 10, 1, 2, 5, 4, 1, 10, 3, 11, 5, 2, 1, 55, 4, 2, 12, 11, 1, 52, 3, 8, 5, 2, 5, 133, 7, 4, 5, 46, 3, 52, 1, 27, 22, 6, 1, 260, 6, 40, 5, 11, 3, 100, 13, 78, 27, 6, 3, 874, 3, 4, 22, 48, 5, 52, 7, 27, 29, 116, 3, 1319, 3, 8, 36, 23, 13, 116, 3, 444, 112, 4, 1, 1834
Offset: 1

Views

Author

Leroy Quet, Jun 13 2006

Keywords

Examples

			Fibonacci(9) = 34; and the divisors of 34 are 1, 2, 17 and 34. Of these divisors, 1 and 2 divide earlier Fibonacci numbers, 17 and 34 do not. So a(9) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[t_] := Append[t, Select[Divisors[Fibonacci[Length[t] + 1]], FreeQ[Flatten[t], # ] &]]; Length /@ Nest[f, {}, 85] (* Ray Chandler, Jun 14 2006 *)

Extensions

Extended by Ray Chandler, Jun 14 2006
Showing 1-10 of 76 results. Next