cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Matthew Goers

Matthew Goers's wiki page.

Matthew Goers has authored 15 sequences. Here are the ten most recent ones:

A381736 Integers k = p*q*r, where p < q < r are distinct primes and p*q > r.

Original entry on oeis.org

30, 70, 105, 154, 165, 182, 195, 231, 273, 286, 357, 374, 385, 399, 418, 429, 442, 455, 494, 561, 595, 598, 627, 646, 663, 665, 715, 741, 759, 782, 805, 874, 897, 935, 957, 969, 986, 1001, 1015, 1023, 1045, 1054, 1085, 1102, 1105, 1131, 1173, 1178, 1209
Offset: 1

Author

Matthew Goers, Mar 05 2025

Keywords

Comments

These are squarefree 3-almost-primes, called sphenic numbers, that are greater than the square of the largest of its prime factors. As all sphenic numbers are, by definition, less than the cube of their largest prime factor, numbers in this sequence satisfy r^2 < k < r^3, where k = p*q*r, p < q < r.

Examples

			30 = 2*3*5 and 2*3 > 5, so 30 is in the sequence.
70 = 2*5*7 and 2*5 > 7, so 70 is in the sequence.
110 = 2*5*11 but 2*5 < 11, so 110 is not in the sequence.
		

Crossrefs

Intersection of A007304 (sphenic numbers) and A164596.
Cf. A382022.

Programs

  • Maple
    N:= 2000: # for terms < N
    P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
    R:= NULL:
    for k from 1 to nops(P) do
      for i from 1 to k-2 while P[i]*P[i+1]*P[k] < N do
         jmin:= max(i+1,ListTools:-BinaryPlace(P,P[k]/P[i])+1);
         jmax:= min(k-1,ListTools:-BinaryPlace(P,N/(P[i]*P[k])));
         R:= R, seq(P[i]*P[j]*P[k],j=jmin .. jmax);
    od od:
    sort([R]); # Robert Israel, Mar 28 2025
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1} && f[[1, 1]]*f[[2, 1]] > f[[3, 1]]]; Select[Range[1500], q] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    is_a381736(n) = my(F=factor(n)); omega(F)==3 && bigomega(F)==3 && F[1,1]*F[2,1]>F[3,1] \\ Hugo Pfoertner, Mar 08 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A381736(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(min(x//(p*q),p*q-1))-b for a,p in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,q in enumerate(primerange(p+1,isqrt(x//p)+1),a+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025

A382022 Composite integers k = p*q*r where p < q < r are distinct primes such that p*r < q^2.

Original entry on oeis.org

70, 105, 110, 154, 182, 231, 238, 266, 273, 286, 322, 374, 418, 429, 442, 494, 506, 561, 598, 627, 638, 646, 663, 682, 715, 741, 754, 759, 782, 806, 814, 874, 897, 902, 935, 946, 957, 962, 969, 986, 1001, 1023, 1034, 1045, 1054, 1066, 1102, 1105, 1118
Offset: 1

Author

Matthew Goers, Mar 12 2025

Keywords

Comments

These are squarefree, 3-almost primes, called sphenic numbers, that are less than the cube of the middle prime factor. If k = p*q*r and p < q < r, it is always true that p^3 < k < r^3. This sequence includes the terms where k < q^3.

Examples

			70 = 2*5*7 and 2*7 < 5^2, so 70 is in the sequence.
105 = 3*5*7 and 3*7 < 5^2, so 105 is in the sequence.
165 = 3*5*11 but 3*11 > 5^2, so 165 is not in the sequence.
		

Crossrefs

Subsequence of A007304 (sphenic numbers).
Supersequence of A375008 (consecutive primes p, q, r).
Cf. A381736.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1} && f[[1, 1]] * f[[3, 1]] < f[[2, 1]]^2]; Select[Range[1200], q] (* Amiram Eldar, Mar 12 2025 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A382022(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(min(x//(p*q),q**2//p))-b for a,p in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,q in enumerate(primerange(p+1,isqrt(x//p)+1),a+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025

A380438 Integers k that are the product of 3 distinct primes, the smallest of which is larger than the 5th root of k: k = p*q*r, where p, q, r are primes and k^(1/5) < p < q < r.

Original entry on oeis.org

30, 105, 165, 195, 231, 385, 455, 595, 665, 715, 805, 935, 1001, 1015, 1045, 1085, 1105, 1235, 1265, 1295, 1309, 1435, 1463, 1495, 1505, 1547, 1595, 1615, 1645, 1705, 1729, 1771, 1855, 1885, 1955, 2015, 2035, 2065, 2093, 2135, 2185, 2233, 2255, 2261, 2345, 2365, 2387, 2405, 2431, 2465, 2485
Offset: 1

Author

Matthew Goers, Jan 24 2025

Keywords

Comments

This subsequence of the sphenics (A007304) is similar to A362910 or A138109 for semiprimes. Ishmukhametov and Sharifullina defined semiprimes n = p*q where each prime is greater than n^(1/4) as strongly semiprime. This sequence defines sphenic numbers with an analogous 'strength' as a product of 3 distinct primes k = p*q*r where each prime is greater than k^(1/5), or, alternately, k < p^5.
The only even term is 30 = 2*3*5.
As there are many equivalent ways of expressing Ishmukhametov and Sharifullina's "strongly semiprime" criterion, it is not obvious how it should most appropriately be extended to measure an equivalent "strength" of numbers with more prime factors. Here we follow a comparison of the least prime factor, p, to the factored number, k; but we could instead compare the greatest prime factor, r, to k; or p to r; or measure the variance/standard deviation of the prime factors (more precisely, after twice taking the logarithm of each factor as is done in A379271). Furthermore, it looks clear that the comparison used here (p against k^(1/5)) could be shown to give a substantially lower density asymptotically within the sphenics than Ishmukhametov and Sharifullina's equivalent for semiprimes. - Peter Munn, Feb 18 2025 and May 13 2025

Examples

			231 = 3*7*11 and 231^(1/5) < 3, so 231 is in the sequence.
255 = 3*5*17 but 255^(1/5) > 3, so 255 is not in the sequence.
		

Crossrefs

Subsequence of A253567, A290965, A379271, and A007304.
A046301 is a subsequence (product of 3 successive primes).
Cf. A115957, A138109, A251728, A362910 (strong semiprimes), A380995.

Programs

  • Mathematica
    q[k_] := Module[{f = FactorInteger[k]}, f[[;; , 2]] == {1, 1, 1} && f[[1, 1]]^5 > k]; Select[Range[2500], q] (* Amiram Eldar, Feb 14 2025 *)
  • PARI
    isok(k) = my(f=factor(k)); (bigomega(f)==3) && (omega(f)==3) && (k < vecmin(f[,1])^5); \\ Michel Marcus, Jan 27 2025
    
  • PARI
    list(lim)=my(v=List()); forprime(p=2,sqrtnint(lim\=1,3), forprime(q=p+1,min(sqrtint(lim\p),p^2), forprime(r=q+2,min(lim\(p*q),p^4\q), listput(v,p*q*r)))); Set(v) \\ Charles R Greathouse IV, May 20 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A380438(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(max(0,primepi(min(x//(p*q),p**4//q))-b) for a,p in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,q in enumerate(primerange(p+1,isqrt(x//p)+1),a+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025

A380995 Integers k that are the product of 3 distinct primes, the smallest of which is larger than the 4th root of k: k = p*q*r, where p, q, r are primes and k^(1/4) < p < q < r.

Original entry on oeis.org

385, 455, 595, 1001, 1309, 1463, 1547, 1729, 1771, 2093, 2233, 2261, 2387, 2431, 2717, 3289, 3553, 4147, 4199, 4301, 4433, 4807, 5083, 5291, 5423, 5681, 5797, 5863, 6061, 6149, 6409, 6479, 6721, 6851, 6919, 7163, 7337, 7429, 7579, 7657, 7667, 7733, 7843, 8041, 8177, 8437, 8569, 8671, 8723, 8789, 8987, 9061
Offset: 1

Author

Matthew Goers, Feb 12 2025

Keywords

Comments

This subsequence of the sphenics (A007304) is similar to A362910 or A138109 for semiprimes. Ishmukhametov and Sharifullina defined semiprimes n = p*q where each prime is greater than n^(1/4) as strongly semiprime. This sequence lists sphenic numbers that are a product of 3 distinct primes k = p*q*r where each prime is greater than k^(1/4).
Sequence is intersection of A007304 (sphenics) and A088382 (numbers not exceeding the 4th power of their smallest prime factor).
No terms have 2 or 3 as a prime factor, as all sphenic numbers are greater than 2^4 = 16 and all odd sphenic numbers are greater than 3^4 = 81.
A380438 is the 'less strong' sequence of sphenic numbers k = p*q*r, where k^(1/5) < p < q < r.

Examples

			595 = 5*7*17 and 595^(1/4) < 5, so 595 is in the sequence.
665 = 5*7*19 but 665^(1/4) > 5, so 665 is not in the sequence.
		

Crossrefs

Cf. A007304 (sphenics), A088382, A380438, A115957, A362910 (strong semiprimes), A251728, A138109.
Subsequence of A253567, A290965.

Programs

  • Mathematica
    q[k_] := Module[{f = FactorInteger[k]}, f[[;; , 2]] == {1, 1, 1} && f[[1, 1]]^4 > k]; Select[Range[10^4], q] (* Amiram Eldar, Feb 14 2025 *)
  • PARI
    is(n) = my(f = factor(n)); f[,2] == [1,1,1]~ && f[1,1]^4 > n \\ David A. Corneth, Apr 24 2025
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A380995(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1		
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(max(0,primepi(min(x//(p*q),p**3//q))-b) for a,p in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,q in enumerate(primerange(p+1,isqrt(x//p)+1),a+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025
    

A366867 Products of sexy prime triples: sphenic numbers with prime factorization (p - 6)*p*(p + 6).

Original entry on oeis.org

935, 1729, 4301, 11339, 49321, 102131, 146969, 298351, 386389, 1089019, 1221191, 3864241, 5171489, 12640949, 16965341, 18181979, 21243961, 43974269, 51881689, 178433279, 208506509, 223626691, 230324329, 270816731, 278421569, 393806449, 849244031, 932539661
Offset: 1

Author

Matthew Goers, Oct 25 2023

Keywords

Examples

			5, 11, and 17 are primes p, p+6, p+12, called a sexy prime triple. 5*11*17 = 935, so 935 is a term.
7, 13, and 19 are the second set of sexy prime triples. 7*13*19=1729, so 1729 is the second term.
		

Crossrefs

Cf. A006489, A111192. Subsequence of A007304.

Programs

  • Mathematica
    (#*(#^2 - 36)) & /@ Select[Prime[Range[180]], PrimeQ[# - 6] && PrimeQ[# + 6] &] (* Amiram Eldar, Oct 27 2023 *)
  • PARI
    apply(x->x*(x-6)*(x+6), select(x->(isprime(x-6) && isprime(x) && isprime(x+6)), [1..1000])) \\ Michel Marcus, Oct 27 2023

Formula

a(n) = (A006489(n) - 6)*A006489(n)*(A006489(n) + 6).

A272899 Product of next n prime numbers greater than n.

Original entry on oeis.org

1, 2, 15, 385, 5005, 323323, 7436429, 955049953, 35336848261, 1448810778701, 62298863484143, 14107860812636383, 832363787945546597, 261682369333342226303, 18579448222667298067513, 1356299720254712758928449, 107147677900122307955347471, 46558817449894322874479515781
Offset: 0

Author

Matthew Goers, May 09 2016

Keywords

Comments

a(n) is of comparable size to n^n. - Charles R Greathouse IV, May 09 2016
a(n) is the product of the terms of the n-th row of A084754. - Michel Marcus, May 09 2016

Examples

			a(0) = 1 (the empty product).
a(1) = 2 = 2.
a(2) = 3 * 5 = 15.
a(3) = 5 * 7 * 11 = 385.
a(4) = 5 * 7 * 11 * 13 = 5005.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul((nextprime@@i)(n), i=1..n):
    seq(a(n), n=0..17);  # Alois P. Heinz, Jun 24 2024
  • Mathematica
    Table[Times@@Prime[Range[PrimePi[n] + 1, PrimePi[n] + n]], {n, 25}] (* Alonso del Arte, May 09 2016 *)
  • PARI
    a(n)=my(v=primes(primepi(n)+n)); prod(i=0,n-1,v[#v-i]) \\ Charles R Greathouse IV, May 09 2016
    
  • Python
    from math import prod
    from sympy import prime, primepi
    def a(n): r = primepi(n); return prod(prime(i) for i in range(r+1, r+n+1))
    print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Feb 15 2021

Formula

a(n) = A002110(n + A000720(n))/A034386(n), where A002110(n) are the primorials, A000720(n) is the pi(n) prime counting function, and A034386(n) is the primorial of primes less than or equal to n. E.g., a(7) = 955049953 = A002110(11) / A034386(7).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2024

A229467 Related to Pisano periods: numbers n such that there are n+10 distinct Fibonacci numbers mod n.

Original entry on oeis.org

170, 230, 530, 830, 1370, 1670, 1730, 1970, 2270, 2570, 2930, 3170, 3830, 4430, 4670, 5030, 5870, 5930, 6170, 6470, 6530, 6830, 7430, 7730, 8270, 8570, 8630, 8870, 9470, 9770, 9830, 10130, 11630, 11870, 11930, 12170, 12830, 13070, 13670, 13730, 14330
Offset: 1

Author

Matthew Goers, Sep 24 2013

Keywords

Comments

These are a subset of the terms of A071774 multiplied by 10, where A071774 are numbers m such that Fibonacci numbers mod m = 2*(m+1). All A071774 terms multiplied by 10 have Pisano periods 3*(n+10) or (n+10). This sequence is the (n+10) subset.

Examples

			The Pisano period of the Fibonacci numbers mod 170 = 180, which is 170+10.
The Pisano period of the Fibonacci numbers mod 1670 = 1680, which is 1670+10.
		

Crossrefs

Extensions

Added 3 terms - Matthew Goers, Oct 14 2013

A229466 Numbers k such that the period of Fibonacci numbers mod k is 3*(k+10).

Original entry on oeis.org

10, 30, 70, 130, 370, 430, 670, 730, 970, 1030, 1270, 1570, 1630, 1930, 2230, 2770, 2830, 3130, 3370, 3670, 3730, 3970, 4330, 4570, 4630, 4870, 5230, 5470, 5770, 6070, 6130, 6430, 6730, 7270, 7330, 7570, 7870, 8230, 8530, 8770, 8830, 9070, 9370, 9970
Offset: 1

Author

Matthew Goers, Sep 24 2013

Keywords

Comments

Related to Pisano periods. Other than the initial term 10, these are a subset of the terms of A071774 multiplied by 10, where A071774 are numbers m such that Fibonacci numbers mod m = 2*(m+1). All A071774 terms multiplied by 10 have Pisano periods 3*(n+10) or (n+10). This sequence is the 3*(n+10) subset. A229467 is the n+10 subset.

Examples

			The Pisano period of the Fibonacci numbers mod 30 = 120, which is 3*(30+10).
The Pisano period of the Fibonacci numbers mod 1570 = 4740, which is 3*(1570+10).
		

Crossrefs

Programs

  • Mathematica
    t = {}; Do[a = {1, 0}; a0 = a; k = 0; While[k++; s = Mod[Plus @@ a, n]; a = RotateLeft[a]; a[[2]] = s; k <= 3*(n + 10) && a != a0]; If[k == 3*(n + 10), AppendTo[t, n]], {n, 2, 10000}]; t (* T. D. Noe, Oct 02 2013 *)

A227397 Related to Pisano periods: Numbers k such that the period of Fibonacci numbers mod k equals k+2.

Original entry on oeis.org

4, 34, 46, 94, 106, 166, 226, 274, 334, 346, 394, 454, 514, 526, 586, 634, 694, 706, 766, 886, 934, 1006, 1126, 1174, 1186, 1234, 1294, 1306, 1354, 1366, 1486, 1546, 1654, 1714, 1726, 1774, 1894, 1954, 1966, 2026, 2326, 2374, 2386, 2434, 2566, 2614, 2734, 2746
Offset: 1

Author

Matthew Goers, Sep 20 2013

Keywords

Comments

This sequence is a subsequence of A220168, where k divides the Fibonacci number F(k+2). There is no discernible pattern among the terms of A220168 terms that are not in this sequence.
All terms are 2 less than a multiple of 6, and all except the first term (4) are 2 less than a multiple of 12.

Examples

			The Pisano period (A001175) for dividing the Fibonacci numbers (A000045) by 4 is 6; 6 = 4 + 2, so 4 is a term.
The Pisano period for the Fibonacci numbers mod 34 is 36; 36 = 34 + 2, so 34 is a term.
		

Crossrefs

A224401 a(n) is the row number of triangle A085612 in which n appears.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 4, 6, 3, 5, 4, 7, 4, 5, 5, 8, 9, 7, 9, 7, 5, 10, 9, 11, 3, 10, 6, 7, 9, 12, 9, 13, 10, 10, 10, 14, 9, 10, 10, 11, 9, 12, 9, 7, 7, 10, 9, 15, 16, 7, 10, 17, 18, 11, 10, 11, 19, 19, 18, 20, 18, 19, 17, 21, 19, 12, 18, 17, 19, 12, 18, 22, 18, 19
Offset: 1

Author

Matthew Goers, Apr 05 2013

Keywords

Comments

Row number in A085612 triangle of prime signatures.
a(n) is not the same for all numbers n with the same prime signature. For such a sequence, see A101296. - Peter Munn, Oct 23 2023

Examples

			a(9) = 3, because 9 is in the 3rd row (1st 3 prime^2) of A085612.
a(10) = 5, because 10 is in the 5th row (1st 5 semiprimes) of A085612.
a(11) = 4, because 11 is in the 4th row (4 primes, prime(3)..prime(6)) of A085612.
		

Crossrefs

First and last positions of each number: A085834, A085836.

Programs

  • Haskell
    import Data.List (findIndex); import Data.Maybe (fromJust)
    a224401 = (+ 1) . fromJust . (`findIndex` a085612_tabf) . elem
    -- Reinhard Zumkeller, Jun 05 2013
    
  • PARI
    See Links section.