A381736 Integers k = p*q*r, where p < q < r are distinct primes and p*q > r.
30, 70, 105, 154, 165, 182, 195, 231, 273, 286, 357, 374, 385, 399, 418, 429, 442, 455, 494, 561, 595, 598, 627, 646, 663, 665, 715, 741, 759, 782, 805, 874, 897, 935, 957, 969, 986, 1001, 1015, 1023, 1045, 1054, 1085, 1102, 1105, 1131, 1173, 1178, 1209
Offset: 1
Keywords
Examples
30 = 2*3*5 and 2*3 > 5, so 30 is in the sequence. 70 = 2*5*7 and 2*5 > 7, so 70 is in the sequence. 110 = 2*5*11 but 2*5 < 11, so 110 is not in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Matthew Goers, Factors of Terms
Programs
-
Maple
N:= 2000: # for terms < N P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]): R:= NULL: for k from 1 to nops(P) do for i from 1 to k-2 while P[i]*P[i+1]*P[k] < N do jmin:= max(i+1,ListTools:-BinaryPlace(P,P[k]/P[i])+1); jmax:= min(k-1,ListTools:-BinaryPlace(P,N/(P[i]*P[k]))); R:= R, seq(P[i]*P[j]*P[k],j=jmin .. jmax); od od: sort([R]); # Robert Israel, Mar 28 2025
-
Mathematica
q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1} && f[[1, 1]]*f[[2, 1]] > f[[3, 1]]]; Select[Range[1500], q] (* Amiram Eldar, Mar 20 2025 *)
-
PARI
is_a381736(n) = my(F=factor(n)); omega(F)==3 && bigomega(F)==3 && F[1,1]*F[2,1]>F[3,1] \\ Hugo Pfoertner, Mar 08 2025
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A381736(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(min(x//(p*q),p*q-1))-b for a,p in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,q in enumerate(primerange(p+1,isqrt(x//p)+1),a+1)) return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025
Comments