A229466 Numbers k such that the period of Fibonacci numbers mod k is 3*(k+10).
10, 30, 70, 130, 370, 430, 670, 730, 970, 1030, 1270, 1570, 1630, 1930, 2230, 2770, 2830, 3130, 3370, 3670, 3730, 3970, 4330, 4570, 4630, 4870, 5230, 5470, 5770, 6070, 6130, 6430, 6730, 7270, 7330, 7570, 7870, 8230, 8530, 8770, 8830, 9070, 9370, 9970
Offset: 1
Keywords
Examples
The Pisano period of the Fibonacci numbers mod 30 = 120, which is 3*(30+10). The Pisano period of the Fibonacci numbers mod 1570 = 4740, which is 3*(1570+10).
Links
- Matthew Goers, Table of n, a(n) for n = 1..74
Programs
-
Mathematica
t = {}; Do[a = {1, 0}; a0 = a; k = 0; While[k++; s = Mod[Plus @@ a, n]; a = RotateLeft[a]; a[[2]] = s; k <= 3*(n + 10) && a != a0]; If[k == 3*(n + 10), AppendTo[t, n]], {n, 2, 10000}]; t (* T. D. Noe, Oct 02 2013 *)
Comments