cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383177 Sphenic numbers k such that floor(log(k)/log(lpf(k))) = 1+floor(log(k)/log(p)) for all primes p | k such that p > lpf(k), where lpf = A020639(k).

Original entry on oeis.org

1001, 1309, 1547, 1729, 2093, 2261, 3553, 4199, 4301, 4807, 5681, 6061, 6479, 7337, 7843, 8671, 9269, 9361, 9889, 10373, 10879, 11063, 11339, 11687, 11803, 11891, 12121, 12617, 13079, 13717, 13949, 13981, 14911, 15283, 15457, 16211, 16523, 17081, 17329, 17719
Offset: 1

Views

Author

Michael De Vlieger, Apr 21 2025

Keywords

Comments

Subset of A382022, a subset of A007304.
Let primes p, q, r, p < q < r divide k.
Then floor(log(k)/log(p)) = 3 and floor(log(k)/log(q)) = floor(log(k)/log(r)) = 2.
Row a(n) of A162306 is the set {1, p, p^2, p^3, q, p*q, p^2*q, q^2, p*q^2, r, p*r, p^2*r, q*r, p*q*r, r^2}.

Examples

			Let s(n) = A010846(a(n)).
Table of a(n) for n = 1..12, showing prime factors of a(n) and
 n   a(n)  facs(a(n))  s(n)
---------------------------
 1   1001    7*11*13    15
 2   1309    7*11*17    15
 3   1547    7*13*17    15
 4   1729    7*13*19    15
 5   2093    7*13*23    15
 6   2261    7*17*19    15
 7   3553   11*17*19    15
 8   4199   13*17*19    15
 9   4301   11*17*23    15
10   4807   11*19*23    15
11   5681   13*19*23    15
12   6061   11*19*29    15
Let f(p,k) = floor(log(k)/log(p)) and let w be the list of f(p,k) across the sorted list of distinct prime factors of k.
30 = 2*3*5 is not in the sequence since f(30,2) = 4, f(30,3) = 3, f(30,5) = 2.
a(1) = 1001 = 7*11*13; f(7,1001) = 3, f(11,1001) = 2, f(13,1001) = 2.
a(2) = 1309 = 7*11*17; w(1309) = {3,2,2}, etc.
Pattern of numbers in row a(n) of A275280:
  Level r^0                    Level r^1               Level r^2
  1,   p,     p^2,  p^3   |    r,   p*r,   p^2*r   |   r^2
  q,   p*q,   p^2*q       |    q*r, p*q*r          |
  q^2, p*q^2;             |
Example: k = 1001 = 7*11*13
    1,   7,  49, 343   |    13,   91, 637   |   169
   11,  77, 539        |   143, 1001        |
  121, 847             |
		

Crossrefs

Intersection of A380995 and A382022.

Programs

  • Mathematica
    f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1;
      If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i];
      Union@ Reap[Do[
        While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn,
          If[Or[k == 1, Union[#2] == #1 - 1 & @@
            TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ],
            Sow[k]];
          j = 1; w[[-j]]++];
          If[j == i, Break[], j++; w[[-j]]++;
            w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ];
    f[3, 20000]

Formula

A010846(a(n)) = 15.

A381736 Integers k = p*q*r, where p < q < r are distinct primes and p*q > r.

Original entry on oeis.org

30, 70, 105, 154, 165, 182, 195, 231, 273, 286, 357, 374, 385, 399, 418, 429, 442, 455, 494, 561, 595, 598, 627, 646, 663, 665, 715, 741, 759, 782, 805, 874, 897, 935, 957, 969, 986, 1001, 1015, 1023, 1045, 1054, 1085, 1102, 1105, 1131, 1173, 1178, 1209
Offset: 1

Views

Author

Matthew Goers, Mar 05 2025

Keywords

Comments

These are squarefree 3-almost-primes, called sphenic numbers, that are greater than the square of the largest of its prime factors. As all sphenic numbers are, by definition, less than the cube of their largest prime factor, numbers in this sequence satisfy r^2 < k < r^3, where k = p*q*r, p < q < r.

Examples

			30 = 2*3*5 and 2*3 > 5, so 30 is in the sequence.
70 = 2*5*7 and 2*5 > 7, so 70 is in the sequence.
110 = 2*5*11 but 2*5 < 11, so 110 is not in the sequence.
		

Crossrefs

Intersection of A007304 (sphenic numbers) and A164596.
Cf. A382022.

Programs

  • Maple
    N:= 2000: # for terms < N
    P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
    R:= NULL:
    for k from 1 to nops(P) do
      for i from 1 to k-2 while P[i]*P[i+1]*P[k] < N do
         jmin:= max(i+1,ListTools:-BinaryPlace(P,P[k]/P[i])+1);
         jmax:= min(k-1,ListTools:-BinaryPlace(P,N/(P[i]*P[k])));
         R:= R, seq(P[i]*P[j]*P[k],j=jmin .. jmax);
    od od:
    sort([R]); # Robert Israel, Mar 28 2025
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1} && f[[1, 1]]*f[[2, 1]] > f[[3, 1]]]; Select[Range[1500], q] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    is_a381736(n) = my(F=factor(n)); omega(F)==3 && bigomega(F)==3 && F[1,1]*F[2,1]>F[3,1] \\ Hugo Pfoertner, Mar 08 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A381736(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(min(x//(p*q),p*q-1))-b for a,p in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,q in enumerate(primerange(p+1,isqrt(x//p)+1),a+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025

A381250 a(n) = least k with n distinct prime factors such that floor(log_q(k)) = floor(log_p(k))-1, where p is the smallest prime factor of k, and q is any other distinct prime factor of k.

Original entry on oeis.org

1, 2, 6, 1001, 81719, 101007559, 84248643949, 78464111896111, 997804397813471821, 1314665322768473913751, 25030469300030639321689313, 93516019518175801382127421211, 1873482639168918364977596279806547, 60958708904928776821774364389940352443, 1089851191947047137351117158610882538395561
Offset: 0

Views

Author

Michael De Vlieger, Apr 21 2025

Keywords

Comments

Terms are squarefree.

Examples

			Let lpf = A020639, slpf = A119288, and gpf = A006530.
Table of a(n), n=0..12, listing the indices of the smallest, second smallest, and greatest prime factors, the latter 2 pertaining to n >= 2 and n >= 3, respectively.
                                           prime indices
 n                                  a(n)   lpf  slpf-gpf  prime factors
-------------------------------------------------------------------------
 0                                    1     0             -
 1                                    2     1             2
 2                                    6     1     2       2*3
 3                                 1001     4     5-6     7*11*13
 4                                81719     5     7-9     11*17*19*23
 5                            101007559     9    13-16    23*41*43*47*53
 6                          84248643949    12    19-23    etc.
 7                       78464111896111    17    25-30
 8                   997804397813471821    26    41-47
 9               1314665322768473913751    32    48-55
10           25030469300030639321689313    47    69-77
11        93516019518175801382127421211    56    83-92
12   1873482639168918364977596279806547    73   108-118
Let f(p,k) = floor(log_p k) and let w be the list of f(p,k) across the sorted list of distinct prime factors of k.
a(0) = 1 since 1 is the only number that does not have prime factors.
a(1) = 2 since prime numbers have just 1 prime factor, and 2 is the smallest prime.
a(2) = 6 since f(2,6) = 2 and f(3,6) = 1; 6 is the smallest squarefree semiprime.
a(3) = 1001 since w(1001) = {3,2,2} and is the smallest sphenic number with this property.
30 is not in the sequence since w(30) = {4,3,2}; 42 is not in since w(42) = {5,3,1}, etc.
a(4) = 81719 since w(81719) = {4,3,3,3} and is the smallest number with 4 distinct prime factors with this property, etc.
		

Crossrefs

Programs

  • Mathematica
    f[om_, lm_] := Block[{f, i, j, k, nn, p, q, w, z},
      i = Abs[om]; z = i - 1; j = z; nn = Abs[lm]; w = ConstantArray[1, i];
      Catch@ Do[
        While[Set[{k, p, q}, {Times @@ #, #[[1]], #[[2]]}] &@
          Map[Prime, Accumulate@ w]; k <= nn,
          If[And[q^i > k, p^(i + 1) > k], Throw[k]];
        j = z; w[[-j]]++];
        If[j == i, Break[], j++; w[[-j]]++;
        w = PadRight[w[[;; -j]], i, 1]], {ii, Infinity}] ];
    {1, 2}~Join~Table[f[n, 2^(11*n + 2)], {n, 2, 16}]
Showing 1-3 of 3 results.