A383177 Sphenic numbers k such that floor(log(k)/log(lpf(k))) = 1+floor(log(k)/log(p)) for all primes p | k such that p > lpf(k), where lpf = A020639(k).
1001, 1309, 1547, 1729, 2093, 2261, 3553, 4199, 4301, 4807, 5681, 6061, 6479, 7337, 7843, 8671, 9269, 9361, 9889, 10373, 10879, 11063, 11339, 11687, 11803, 11891, 12121, 12617, 13079, 13717, 13949, 13981, 14911, 15283, 15457, 16211, 16523, 17081, 17329, 17719
Offset: 1
Keywords
Examples
Let s(n) = A010846(a(n)). Table of a(n) for n = 1..12, showing prime factors of a(n) and n a(n) facs(a(n)) s(n) --------------------------- 1 1001 7*11*13 15 2 1309 7*11*17 15 3 1547 7*13*17 15 4 1729 7*13*19 15 5 2093 7*13*23 15 6 2261 7*17*19 15 7 3553 11*17*19 15 8 4199 13*17*19 15 9 4301 11*17*23 15 10 4807 11*19*23 15 11 5681 13*19*23 15 12 6061 11*19*29 15 Let f(p,k) = floor(log(k)/log(p)) and let w be the list of f(p,k) across the sorted list of distinct prime factors of k. 30 = 2*3*5 is not in the sequence since f(30,2) = 4, f(30,3) = 3, f(30,5) = 2. a(1) = 1001 = 7*11*13; f(7,1001) = 3, f(11,1001) = 2, f(13,1001) = 2. a(2) = 1309 = 7*11*17; w(1309) = {3,2,2}, etc. Pattern of numbers in row a(n) of A275280: Level r^0 Level r^1 Level r^2 1, p, p^2, p^3 | r, p*r, p^2*r | r^2 q, p*q, p^2*q | q*r, p*q*r | q^2, p*q^2; | Example: k = 1001 = 7*11*13 1, 7, 49, 343 | 13, 91, 637 | 169 11, 77, 539 | 143, 1001 | 121, 847 |
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Hasse diagram of R(1001) with logarithmic vertical scale. Gray represents the empty product, red represents primes, gold represents proper prime powers, green squarefree composites, and blue numbers that are neither squarefree nor prime powers.
- Michael De Vlieger, Three dimensional diagram of R(a(n)), labeling exponents along axes, showing p^3, q^2, and r^2, and using the color scheme above.
- Michael De Vlieger, Plot prime(i) | a(n) at (x,y) = (n,i) for n = 1..2048, 8X vertical exaggeration. The green bar at the bottom of the graph emphasizes the x axis that rides on the top edge of the bar.
Programs
-
Mathematica
f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1; If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i]; Union@ Reap[Do[ While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn, If[Or[k == 1, Union[#2] == #1 - 1 & @@ TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ], Sow[k]]; j = 1; w[[-j]]++]; If[j == i, Break[], j++; w[[-j]]++; w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ]; f[3, 20000]
Formula
A010846(a(n)) = 15.
Comments