A308799 Primes p such that A001177(p) = (p-1)/6.
541, 709, 2281, 2389, 2689, 4861, 5869, 7069, 8089, 8761, 8821, 8929, 9049, 9601, 10009, 10321, 10789, 12421, 12781, 13309, 13681, 14341, 14869, 14929, 16981, 19309, 19429, 19501, 19609, 20389, 21841, 22741, 23629, 24181, 24481, 25189, 26821, 27109, 27361, 27961
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0, Return[k]]]; Reap[For[p = 2, p < 28000, p = NextPrime[p], If[Mod[p, 6] == 1, If[pn[p] == (p - 1)/6, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
-
PARI
Entry_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if((Mod(M,p)^v[d])[2,1]==0, return(v[d])))) forprime(p=2, 28000, if(Entry_for_decomposing_prime(p)==(p-1)/6, print1(p, ", ")))
Comments