A308803 a(n) is the largest n-digit palindrome that is the product of two numbers having an equal number of digits, or 0 if no such palindrome exists.
9, 0, 999, 9009, 99999, 906609, 9999999, 99000099, 999969999, 9966006699, 99999999999, 999000000999, 9999998999999, 99956644665999, 999999999999999, 9999000000009999, 99999999799999999, 999900665566009999, 9999999997999999999, 99999834000043899999, 999999999999999999999, 9999994020000204999999, 99999999999899999999999
Offset: 1
Examples
a(1)=9 because 3*3=9; a(2)=0 because there is no such palindrome; a(3)=999 because 27*37=999; a(4)=9009 because 99*91=9009; a(5)=99999 because 369*271=99999; a(6)=906609 because 993*913=906609; a(7)=9999999 because 2151*4649=9999999; a(8)=99000099 because 9999*9901=99000099; a(9)=999969999 because 50001*19999=999969999; a(10)=9966006699 because 99979*99681=9966006699; a(11)=99999999999 because 194841*513239=99999999999; a(12)=999000000999 because 999999*999001=999000000999; a(13)=9999998999999 because 2893921*3455519=9999998999999.
Links
- Math StackExchange, Proof for all largest palindrome numbers for each power of 10
- Donghwi Park, Source code for even n and all examples for n<=21
- Chai Wah Wu, Decomposition of a(n) for odd n
Extensions
a(14)-a(20) from Jon E. Schoenfield, May 10 2019
a(21) from Donghwi Park, Jul 16 2019
a(22)-a(23) from Chai Wah Wu, Sep 30 2019
a(20) corrected by Donghwi Park, Dec 18 2020
Comments