cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308812 a(n) = Sum_{k=1..n} binomial(n,k) * floor(n/k).

Original entry on oeis.org

1, 5, 13, 33, 61, 143, 246, 521, 985, 1995, 3499, 7923, 14028, 28642, 55603, 115369, 210665, 455399, 838338, 1755983, 3383652, 6974159, 13034492, 28011611, 52475486, 108821068, 210050941, 436273458, 824191369, 1744975533, 3301974301, 6867107913, 13250454241
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 22 2019

Keywords

Crossrefs

Cf. A056045.

Programs

  • Maple
    f:= proc(n) local k; add(binomial(n,k)*floor(n/k),k=1..n) end proc:
    map(f, [$1..100]); # Robert Israel, Aug 23 2019
  • Mathematica
    Table[Sum[Binomial[n, k] Floor[n/k] , {k, 1, n}], {n, 1, 33}]
    Table[SeriesCoefficient[1/(1 - x) Sum[Binomial[n, k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}], {n, 1, 33}]
    Table[Sum[Sum[Binomial[n, d], {d, Divisors[k]}], {k, 1, n}], {n, 1, 33}]

Formula

a(n) = [x^n] (1/(1 - x)) * Sum_{k=1..n} binomial(n,k) * x^k/(1 - x^k).
a(n) = Sum_{k=1..n} Sum_{d|k} binomial(n,d).
a(n) ~ 3 * 2^(n-1). - Vaclav Kotesovec, May 28 2021