cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308824 Sum of the fourth largest parts in the partitions of n into 5 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 9, 13, 18, 27, 36, 50, 64, 86, 109, 140, 175, 220, 269, 331, 399, 486, 577, 689, 811, 959, 1119, 1305, 1508, 1747, 2003, 2300, 2617, 2984, 3376, 3821, 4300, 4839, 5415, 6060, 6749, 7521, 8337, 9243, 10207, 11273, 12404, 13641
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 26 2019

Keywords

Examples

			The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |      9          13          18          27          36        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 08 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[k, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 100}]

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} k.
a(n) = A308822(n) - A308823(n) - A308825(n) - A308826(n) - A308827(n).
Conjectures from Colin Barker, Jun 30 2019: (Start)
G.f.: x^5*(1 + x^3 + x^6) / ((1 - x)^6*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) + 2*a(n-4) - 4*a(n-6) + a(n-8) - 3*a(n-9) + 4*a(n-10) + 4*a(n-11) - 3*a(n-12) + a(n-13) - 4*a(n-15) + 2*a(n-17) - a(n-18) + a(n-19) + a(n-20) - a(n-21) for n>20.
(End)