cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005797 Expansion of Jacobi nome q in terms of parameter m/16.

Original entry on oeis.org

0, 1, 8, 84, 992, 12514, 164688, 2232200, 30920128, 435506703, 6215660600, 89668182220, 1305109502496, 19138260194422, 282441672732656, 4191287776164504, 62496081197436736, 935823746406530603, 14065763582458332888, 212122153814497767004, 3208590886304243284640
Offset: 0

Views

Author

Keywords

Comments

For a faster convergent series see A002103, where k' = sqrt(1 - k^2). - Wolfdieter Lang, Jul 14 2016
The Ansatz technique of A308835, A308836, and A308837 also works to produce the coefficients of this sequence from the ODE: T-d/dx(4*(1-x)*x*dT/dx)=0. - Bradley Klee, Jul 03 2019

Examples

			G.f. = x + 8*x^2 + 84*x^3 + 992*x^4 + 12514*x^5 + 164688*x^6 + 2232200*x^7 + ...
Given g.f. A(x),  then q = exp(-Pi sqrt(6)) = A( m/16 ) where m = ((2-sqrt(3))*(sqrt(3)-sqrt(2)))^2. - _Michael Somos_, Oct 30 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
  • C. L. Mallows, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Reversion of A005798. Cf. A002639. Other nomes: A308835, A308836, A308837.

Programs

  • Maple
    a:= n-> coeff(series(EllipticNome(4*sqrt(x)), x, n+1), x, n):
    seq(a(n), n=0..17);  # Thomas Richard, Aug 03 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticNomeQ[ 16 x], {x, 0 ,n}] (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n) = if( n < 1, 0, polcoeff( serreverse( x * prod(k=1, n-1, (1 + x^k)^(-1)^k, 1 + x * O(x^n))^8), n))} /* Michael Somos, Jul 19 2002 */
    
  • PARI
    {a(n) = my(A, m); if( n < 1, 0, m=1; A = x + O(x^2); while( m < n, m*=2; A = sqrt( subst(A, x, x^2)); A /= (1 + 4*A)^2); polcoeff( serreverse(A), n))} /* Michael Somos, Mar 18 2003 */

Formula

G.f.: q = q(m) = Sum_{n>=0} a(n) * (m/16)^n.
G.f.: exp( -Pi * agm(1, sqrt(1 - 16 * x) ) / agm(1, sqrt( 16*x ) ) ).

A308835 The nome q=exp(T_C/T_R)=Sum_{n>=0} a(n)*(x/27)^n follows from the series solutions of 2*T-d/dx(9*(1-x)*x*dT/dx)=0.

Original entry on oeis.org

0, 1, 15, 279, 5729, 124554, 2810718, 65114402, 1538182398, 36887880105, 895303119303, 21943398532563, 542209373589501, 13489931811324550, 337599511395854298, 8491805574767197650, 214548940430198454054, 5441921826542937659088, 138512110164878076019560
Offset: 0

Views

Author

Bradley Klee, Jun 27 2019

Keywords

Comments

Also appears in Ramanujan's theory of elliptic functions, signature 3 (cf. A006480). Almkvist et al. give a real and complex Ansatz for the second-order, ordinary differential equation: T_R = 1 + x*{Z[[x]]}, T_C = T_R*log(x) + x*{Z[[x]]}.

References

  • B. C. Berndt, "Ramanujan's Notebooks Part II", Springer, 2012, pages 80-82.

Crossrefs

Programs

  • Mathematica
    G[nMax_]:=Dot[RecurrenceTable[{Dot[{(3*n-5)^2 (3*n-4)^2 (9*n-4), -18(n - 1)(40 - 197*n + 351*n^2 - 279*n^3 + 81*n^4),81(n - 1)*n^3*(9*n - 13)}, a[n-#] & /@ Reverse[Range[0, 2]]] == 0, a[0] == 0, a[1] == 5/9}, a, {n, 0, nMax}], x^Range[0, nMax]];
    qSer[nMax_] := Expand[Times[x, Normal[Series[Exp[ Divide[G[nMax], Hypergeometric2F1[1/3, 2/3, 1, x]]], {x, 0, nMax}]]]];
    CoefficientList[(1/k)*qSer[20]/.{x->k*x},x]/.{k->27}

A308837 The nome q=exp(T_C/T_R)=Sum_{n>=0} a(n)*(x/432)^n follows from the series solutions of 5*T-d/dx(36*(1-x)*x*dT/dx)=0.

Original entry on oeis.org

0, 1, 312, 107604, 39073568, 14645965026, 5609733423408, 2182717163349896, 859521859502348352, 341679883727799750159, 136868519056531319862408, 55173969942211048781835468, 22360181278518828446785034976, 9103073677708423854325869548662
Offset: 0

Views

Author

Bradley Klee, Jun 27 2019

Keywords

Comments

Also appears in Ramanujan's theory of elliptic functions, signature 6 (cf. A113424). Almkvist et al. give a real and complex Ansatz for the second-order, ordinary differential equation: T_R = 1 + x*{Z[[x]]}, T_C = T_R*log(x) + x*{Z[[x]]}.

References

  • B.C. Berndt, "Ramanujan's Notebooks Part II", Springer, 2012, pages 80-82.

Crossrefs

Programs

  • Mathematica
    G[nMax_] := Dot[RecurrenceTable[{Dot[{(6*n - 11)^2 (6*n - 7)^2 (18*n - 5), -36 (n - 1) (385 - 2426*n + 4968*n^2 - 4248*n^3 + 1296*n^4), 1296 (n - 1) n^3 (18*n - 23)},
    a[n - #] & /@ Reverse[Range[0, 2]]] == 0, a[0] == 0, a[1] == 13/18}, a, {n, 0, nMax}], x^Range[0, nMax]];
    qSer[nMax_] := Expand[Times[x,Normal[ Series[Exp[Divide[G[nMax], Hypergeometric2F1[1/6, 5/6, 1, x]]], {x, 0, nMax}]]]];
    CoefficientList[(1/k)*qSer[12] /. {x -> k*x}, x] /. {k -> 432}
Showing 1-3 of 3 results.