A308899 a(n) = largest prime factor of the number with decimal expansion 20305070...0p_n where p_n = n-th prime.
2, 29, 131, 33287, 17627, 1754975809, 59218567, 318879703697, 2030507011013017019023, 14400758943354730631369, 1016015647, 32002443156997, 2464082401591041689, 4916481866859605372937116297910511, 2030507011013017019023029031037041043047
Offset: 1
Examples
Here are Maple's factorizations of 2, 203, 20305, ... (the factors appear in random order): 2 = (2) 203 = (7) (29) 20305 = (5) (31) (131) 2030507 = (61) (33287) 2030507011 = (13) (17627) (8861) 2030507011013 = (13) (89) (1754975809) 2030507011013017 = (59218567) (34288351) 2030507011013017019 = (7) (547) (1663) (318879703697)
Links
- Daniel Suteu, Table of n, a(n) for n = 1..43
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios!, 2030507...[70 digits]...89097.
Crossrefs
Inspired by the comment in Bernard Schott's A309101.
Programs
-
Mathematica
Table[FactorInteger[FromDigits[Flatten[IntegerDigits/@Riffle[Prime[Range[n]],0]]]][[-1,1]],{n,20}] (* Harvey P. Dale, May 09 2021 *)
-
PARI
pp = 0; forprime (p=2, 47, print1 (vecmax(factor(pp = pp * 10^(1+#digits(p)) + p)[,1]~) ", ")) \\ Rémy Sigrist, Jul 13 2019
Extensions
More terms from Rémy Sigrist, Jul 13 2019
Comments