A308907 Sum of the fifth largest parts in the partitions of n into 6 squarefree parts.
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 6, 10, 10, 14, 18, 26, 28, 37, 41, 57, 62, 77, 87, 113, 122, 152, 170, 213, 230, 279, 307, 376, 402, 471, 516, 622, 661, 768, 830, 978, 1041, 1194, 1282, 1492, 1586, 1804, 1932, 2217, 2340, 2632, 2815, 3195, 3380, 3780, 4026
Offset: 0
Keywords
Programs
-
Mathematica
Table[Sum[Sum[Sum[Sum[Sum[l*MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
Formula
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * l, where mu is the Möbius function (A008683).