cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308907 Sum of the fifth largest parts in the partitions of n into 6 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 6, 10, 10, 14, 18, 26, 28, 37, 41, 57, 62, 77, 87, 113, 122, 152, 170, 213, 230, 279, 307, 376, 402, 471, 516, 622, 661, 768, 830, 978, 1041, 1194, 1282, 1492, 1586, 1804, 1932, 2217, 2340, 2632, 2815, 3195, 3380, 3780, 4026
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[l*MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * l, where mu is the Möbius function (A008683).
a(n) = A308903(n) - A308906(n) - A308908(n) - A308909(n) - A308910(n) - A308911(n).