cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308930 Sum of the fourth largest parts in the partitions of n into 7 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 9, 15, 22, 33, 46, 67, 91, 128, 169, 228, 297, 390, 498, 641, 806, 1018, 1263, 1569, 1921, 2358, 2856, 3460, 4151, 4978, 5915, 7030, 8287, 9763, 11425, 13357, 15526, 18030, 20825, 24027, 27597, 31660, 36167, 41276, 46921
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[k, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

Formula

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} k.
a(n) = A308926(n) - A308927(n) - A308928(n) - A308929(n) - A308931(n) - A308932(n) - A308933(n).