cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308935 a(n) is the smallest m > n such that n^2*(n^2 + 1) divides m^2*(m^2 + 1).

Original entry on oeis.org

2, 8, 12, 64, 18, 216, 35, 112, 360, 818, 660, 348, 208, 2744, 693, 4096, 493, 450, 3420, 4832, 1071, 2112, 1242, 13824, 7800, 17576, 1998, 4368, 10133, 1560, 1178, 1280, 3597, 3060, 8582, 46656, 5032, 1292, 29640, 12768, 1189, 14868, 3182, 13112, 36468, 6670
Offset: 1

Views

Author

Rémy Sigrist, Jul 01 2019

Keywords

Comments

For any n > 0, a(n) exists as n^2*(n^2+1) divides (n^3)^2*((n^3)^2+1).
Tsz Ho Chan proved that a(n) >> n*log(n)^(1/8)/log(log(n))^12.

Examples

			For n = 2:
- A071253(3) mod A071253(2) = 10,
- A071253(4) mod A071253(2) = 12,
- A071253(5) mod A071253(2) = 10,
- A071253(6) mod A071253(2) = 12,
- A071253(7) mod A071253(2) = 10,
- A071253(8) mod A071253(2) = 0,
- hence a(2) = 8.
		

Crossrefs

Programs

  • Magma
    a:=[]; for n in [1..50] do m:=n+1; while not IsIntegral( (m^2*(m^2 + 1))/(n^2*(n^2 + 1) ))  do m:=m+1; end while; Append(~a,m); end for; a; // Marius A. Burtea, Dec 20 2019
  • Mathematica
    a[n_] := With[{n2 = n^2(n^2+1)}, For[m = n+1, True, m++, If[Divisible[ m^2(m^2+1), n2], Print[n, " ", m]; Return[m]]]];
    a /@ Range[100] (* Jean-François Alcover, Dec 20 2019 *)
  • PARI
    a(n, f = x->x^2*(x^2+1)) = my (fn=f(n)); for (m=n+1, oo, if (f(m)%fn==0, return (m)))
    
  • Python
    def A308935(n):
        n2, m, m2 = n**2*(n**2+1), n+1, ((n+1)**2*((n+1)**2+1)) % (n**2*(n**2+1))
        while m2:
            m2, m = (m2 + 2*(2*m+1)*(m**2+m+1)) % n2, (m+1) % n2
        return m # Chai Wah Wu, Jul 01 2019
    

Formula

a(n) <= n^3.