cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309525 a(n) is the greatest divisor of A006190(n) that is coprime to A006190(m) for all positive integers m < n.

Original entry on oeis.org

1, 3, 10, 11, 109, 1, 1189, 119, 1297, 131, 141481, 59, 1543321, 1429, 3089, 14159, 183642229, 433, 2003229469, 14041, 1837837, 170039, 238367471761, 7079, 23854956949, 1854841, 2186871697, 1670761, 309400794703549, 12871, 3375045015828949, 200477279
Offset: 1

Views

Author

Jianing Song, Aug 06 2019

Keywords

Comments

Analog of A178763 and A308949.

Examples

			A006190(12) = 467280 = 2^4 * 3^2 * 5 * 11 * 59. We have 2, 3, 5 divides A006190(6) = 360 and 11 divides A006190(3) = 11, but A006190(m) is coprime to 59 for all 1 <= m < 12, so a(12) = 59.
		

Crossrefs

Programs

  • Maple
    A6190:= proc(n) option remember; 3*procname(n-1)+procname(n-2) end proc:
    A6190(0):= 0: A6190(1):= 1:
    f:= proc(n) local k,i,g;
      k:= A6190(n);
      for i from 1 to n-1 do
        g:= igcd(k,A6190(i));
        while g > 1 do
          k:= k/g;
          g:= igcd(k,A6190(i));
        od;
      od;
      k
    end proc:
    map(f, [$1..40]); # Robert Israel, Aug 02 2024
  • PARI
    T(n) = ([3, 1; 1, 0]^n)[2, 1]
    b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i]))
    a(n) = if(isprime(n)&&!(13%n), 1543321, if(n!=6, b(n)/gcd(n, b(n)), 1))

Formula

a(n) = A253807(n) / gcd(A253807(n), n) if n != 6, 13.

A309526 a(n) is the greatest divisor of A001353(n) that is coprime to A001353(m) for all positive integers m < n.

Original entry on oeis.org

1, 4, 15, 7, 209, 13, 2911, 97, 901, 181, 564719, 193, 7865521, 2521, 6989, 18817, 1525870529, 2701, 21252634831, 37441, 6779137, 489061, 4122901604639, 37633, 274758906449, 6811741, 6575588101, 1037623, 11140078609864049, 40321, 155161278879431551
Offset: 1

Views

Author

Jianing Song, Aug 06 2019

Keywords

Comments

Analog of A178763 and A308949.
Let b(n) = A309040(n)*gcd(A309040(n),n), then for n > 3: a(n) = b(2n) for even n and b(n)*b(2n) for odd n. It seems highly impossible that b(n) = 1 holds for n > 3, so it seems that only even-indexed terms can be primes.

Examples

			A001353(6) = 780 = 2^2 * 3 * 5 * 13. We have 2 divides A001353(2) = 2 and 3, 5 divides A001353(3) = 15, but A001353(m) is coprime to 13 for all 1 <= m < 6, so a(6) = 13.
		

Crossrefs

Programs

  • PARI
    T(n) = ([4, -1; 1, 0]^n)[2, 1]
    b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i]))
    a(n) = if(isprime(n)&&!(12%n), b(n), b(n)/gcd(n, b(n)))

Formula

a(n) = A306825(n) / gcd(A306825(n), n) if n != 2, 3.
Showing 1-2 of 2 results.