A309525 a(n) is the greatest divisor of A006190(n) that is coprime to A006190(m) for all positive integers m < n.
1, 3, 10, 11, 109, 1, 1189, 119, 1297, 131, 141481, 59, 1543321, 1429, 3089, 14159, 183642229, 433, 2003229469, 14041, 1837837, 170039, 238367471761, 7079, 23854956949, 1854841, 2186871697, 1670761, 309400794703549, 12871, 3375045015828949, 200477279
Offset: 1
Examples
A006190(12) = 467280 = 2^4 * 3^2 * 5 * 11 * 59. We have 2, 3, 5 divides A006190(6) = 360 and 11 divides A006190(3) = 11, but A006190(m) is coprime to 59 for all 1 <= m < 12, so a(12) = 59.
Links
- Robert Israel, Table of n, a(n) for n = 1..1930
Programs
-
Maple
A6190:= proc(n) option remember; 3*procname(n-1)+procname(n-2) end proc: A6190(0):= 0: A6190(1):= 1: f:= proc(n) local k,i,g; k:= A6190(n); for i from 1 to n-1 do g:= igcd(k,A6190(i)); while g > 1 do k:= k/g; g:= igcd(k,A6190(i)); od; od; k end proc: map(f, [$1..40]); # Robert Israel, Aug 02 2024
-
PARI
T(n) = ([3, 1; 1, 0]^n)[2, 1] b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i])) a(n) = if(isprime(n)&&!(13%n), 1543321, if(n!=6, b(n)/gcd(n, b(n)), 1))
Comments