A308952 Number of partitions of n into 7 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 12, 14, 20, 22, 29, 32, 42, 47, 59, 64, 81, 89, 109, 118, 144, 156, 187, 202, 239, 259, 303, 324, 379, 408, 469, 501, 577, 618, 704, 749, 851, 910, 1027, 1088, 1228, 1308, 1461, 1548, 1730, 1838, 2039, 2153, 2387
Offset: 0
Keywords
Links
Programs
-
Maple
g:= proc(n,k,m) option remember; local i , j; if m=1 then if n=k then return 1 else return 0 fi fi; if k*m < n then return 0 fi; if k*m = n then return 1 fi; add(add(procname(n-i*k,j,m-i), j= select(numtheory:-issqrfree,[$max(1,ceil((n-i*k)/(m-i))) .. k-1])), i=1..min(n/k,m-1)); end proc: f:= proc(n) local k; add(g(n,k,7),k=select(numtheory:-issqrfree,[$ceil(n/7)..n])) end proc: f(0):= 0: map(f, [$0..100]); # Robert Israel, Jul 03 2019
-
Mathematica
Table[Sum[Sum[Sum[Sum[Sum[Sum[MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o]^2, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]
Formula
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o)^2, where mu is the Möbius function (A008683).
a(n) = A308953(n)/n for n > 0.