A308954 Sum of the smallest parts in the partitions of n into 7 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 10, 13, 15, 22, 25, 33, 37, 49, 55, 71, 77, 98, 109, 136, 148, 182, 199, 243, 264, 314, 344, 413, 441, 522, 567, 663, 711, 829, 896, 1036, 1106, 1269, 1370, 1572, 1666, 1903, 2041, 2316, 2460, 2780, 2971, 3350, 3546
Offset: 0
Keywords
Programs
-
Mathematica
Table[Sum[Sum[Sum[Sum[Sum[Sum[o * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o]^2, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]
Formula
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o)^2 * o, where mu is the Möbius function (A008683).