A308969 Table, read by rows: row n contains the prime divisors of A001008 (numerator of n-th harmonic number), without repetitions.
1, 3, 11, 5, 137, 7, 3, 11, 761, 7129, 11, 61, 97, 863, 13, 509, 29, 43, 919, 1049, 1117, 29, 41233, 17, 8431, 37, 1138979, 19, 39541, 37, 7440427, 5, 11167027, 18858053, 3, 23, 53, 227, 761, 583859, 5, 577, 467183, 109, 312408463
Offset: 1
Examples
n | A001008(n) written as product of primes -----+--------------------------------------------- 1 | 1 (empty product) 2 | 3 3 | 11 4 | 5 * 5 (So 5 is the only prime divisor, and row(4) = {5}.) 5 | 137 6 | 7 * 7 7 | 3 * 11 * 11 whence row(7) = {3, 11}. 8 | 761 9 | 7129 10 | 11 * 11 * 61 whence row(10) = {11, 61}. 11 | 97 * 863 12 | 13 * 13 * 509 whence row(16) = {13, 509}. 13 | 29 * 43 * 919 whence row(13) = {29, 43, 919}. 14 | 1049 * 1117 15 | 29 * 41233 16 | 17 * 17 * 8431 whence row(16) = {17, 8431}. 17 | 37 * 1138979 18 | 19 * 19 * 39541 whence row(18) = {19, 39541}. 19 | 37 * 7440427 20 | 5 * 11167027 etc.
Crossrefs
Programs
-
Mathematica
Table[FactorInteger[Numerator[HarmonicNumber[n]]][[All,1]],{n,30}]// Flatten (* Harvey P. Dale, Sep 14 2020 *)
-
PARI
row(n)={if(n>1, factor(A001008(n))[,1]~, [1])}
Comments