A308972 Least k > 0 such that A114561(k) == A114561(k+1) mod n.
1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 3, 4, 2, 3, 2, 2, 1, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 3, 2, 4, 5, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 1, 2, 2, 3, 4, 2, 4, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 4, 1, 2, 2, 2
Offset: 1
Keywords
Examples
4, 4^4, 4^4^4, ... mod 8 equal 4, 0, 0, ..., so A114561(k) mod 8 = 0 for all k >= 2, hence a(8) = 2.
Programs
-
PARI
a(n) = {c=0; k=1; x=0; d=n; while(k==1, z=x++; y=0; b=1; while(z>0, while(y++
Formula
a(n) <= A003434(n).
Comments