cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309007 Largest k such that n^k has distinct digits in base 10 (for n>1).

Original entry on oeis.org

29, 9, 10, 8, 4, 8, 5, 3, 1, 0, 4, 4, 5, 1, 5, 6, 4, 3, 1, 3, 3, 4, 3, 4, 1, 3, 2, 3, 1, 2, 4, 2, 1, 3, 2, 2, 5, 1, 1, 3, 2, 2, 4, 1, 1, 1, 4, 4, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 1, 3, 1, 2, 2, 3, 2, 3, 3, 0, 2, 2, 1, 1, 2, 1, 3, 1, 2, 2
Offset: 2

Views

Author

Tom Bryan, Jul 05 2019

Keywords

Examples

			For n = 2, 2^29 = 536870912, which is the largest power of 2 to contain distinct digits.
		

Crossrefs

Cf. A010784.
For n=2, see A084688 and A260814.

Programs

  • Mathematica
    a[n_] := SelectFirst[ Range[ Floor@ Log[n, 10^10], 0, -1], (Sort[#] == Union[#]) &@ IntegerDigits[ n^#] &]; Array[a, 86, 2] (* Giovanni Resta, Jul 07 2019 *)
  • PARI
    a(n) = forstep (k=logint(10^10, n), 0, -1, my (d=digits(n^k)); if (#d==#Set(d), return (k))) \\ Rémy Sigrist, Jul 06 2019
  • Python
    def distinct_digits(n):
        p = math.floor(math.log(10**10)/math.log(n))
        while p >= 1:
            d = n**p
            if len(set(str(d))) == len(str(d)):
                return(p)
            else:
                p = p - 1
        return(0)
    

Formula

a(n) = 0 for any n > 9876543210. - Rémy Sigrist, Jul 06 2019

Extensions

More terms from Rémy Sigrist, Jul 06 2019