A309007 Largest k such that n^k has distinct digits in base 10 (for n>1).
29, 9, 10, 8, 4, 8, 5, 3, 1, 0, 4, 4, 5, 1, 5, 6, 4, 3, 1, 3, 3, 4, 3, 4, 1, 3, 2, 3, 1, 2, 4, 2, 1, 3, 2, 2, 5, 1, 1, 3, 2, 2, 4, 1, 1, 1, 4, 4, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 1, 3, 1, 2, 2, 3, 2, 3, 3, 0, 2, 2, 1, 1, 2, 1, 3, 1, 2, 2
Offset: 2
Examples
For n = 2, 2^29 = 536870912, which is the largest power of 2 to contain distinct digits.
Programs
-
Mathematica
a[n_] := SelectFirst[ Range[ Floor@ Log[n, 10^10], 0, -1], (Sort[#] == Union[#]) &@ IntegerDigits[ n^#] &]; Array[a, 86, 2] (* Giovanni Resta, Jul 07 2019 *)
-
PARI
a(n) = forstep (k=logint(10^10, n), 0, -1, my (d=digits(n^k)); if (#d==#Set(d), return (k))) \\ Rémy Sigrist, Jul 06 2019
-
Python
def distinct_digits(n): p = math.floor(math.log(10**10)/math.log(n)) while p >= 1: d = n**p if len(set(str(d))) == len(str(d)): return(p) else: p = p - 1 return(0)
Formula
a(n) = 0 for any n > 9876543210. - Rémy Sigrist, Jul 06 2019
Extensions
More terms from Rémy Sigrist, Jul 06 2019