A309025 Expansion of x * Product_{k>=0} (1 + x^(2^k) + x^(2^(k+3))).
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 4, 2, 2, 1, 4, 2, 2, 1, 5, 3, 3, 2, 4, 2, 2, 1, 6, 3, 4, 2, 4, 2, 2, 1, 7, 4, 4, 2, 4, 2, 2, 1, 8, 4, 4, 2, 4, 2, 2, 1, 9, 5, 5, 3, 5, 3, 3, 2, 9, 4, 5, 2, 5, 2, 3, 1, 10, 6, 5, 3, 6, 4, 3, 2, 10, 4, 5, 2, 6, 2, 3, 1, 11, 7, 6, 4
Offset: 0
Keywords
Links
- K. Anders, Counting Non-Standard Binary Representations, JIS vol 19 (2016) #16.3.3 example 5.
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[x Product[(1 + x^(2^k) + x^(2^(k + 3))), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
Formula
a(n) = 0 for n <= 0, a(1) = 1; a(2*n) = a(n), a(2*n+1) = a(n-3) + a(n+1).
Comments