cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309046 Expansion of Product_{k>=0} (1 + x^(3^k) + x^(2*3^k) + x^(3^(k+1)))^(3^k).

Original entry on oeis.org

1, 1, 1, 4, 3, 3, 9, 6, 6, 25, 19, 19, 58, 39, 39, 105, 66, 66, 211, 145, 145, 394, 249, 249, 630, 381, 381, 1114, 733, 733, 1903, 1170, 1170, 2889, 1719, 1719, 4827, 3108, 3108, 7869, 4761, 4761, 11574, 6813, 6813, 18489, 11676, 11676, 28839, 17163, 17163, 41013, 23850
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 09 2019

Keywords

Comments

The trisection equals the three-fold convolution of this sequence with themselves.

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Product[(1 + x^(3^k) + x^(2 3^k) + x^(3^(k + 1)))^(3^k), {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x]
    nmax = 52; A[] = 1; Do[A[x] = (1 + x + x^2 + x^3) A[x^3]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f.: Product_{k>=0} ((1 - x^(4*3^k))/(1 - x^(3^k)))^(3^k).
G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3) * A(x^3)^3.