cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309050 Number of (binary) max-heaps on 2n elements from the set {0,1} containing n 0's and n 1's.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 27, 54, 109, 219, 460, 962, 1986, 4044, 8516, 18058, 37801, 77701, 164300, 350336, 738945, 1530521, 3250659, 6962248, 14735660, 30625898, 65206770, 140040538, 297712980, 622136512, 1328716192, 2861101350, 6086238317, 12716525621, 27172910036
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Comments

Also the number of (binary) min-heaps on 2n elements from the set {0,1} containing n 0's and n 1's.

Examples

			a(0) = 1: ().
a(1) = 1: 10.
a(2) = 2: 1010, 1100.
a(3) = 4: 101001, 110010, 110100, 111000.
a(4) = 7: 10100110, 11010001, 11011000, 11100010, 11100100, 11101000, 11110000.
a(5) = 13: 1101000110, 1101100001, 1101100010, 1101100100, 1110011000, 1110100001, 1110101000, 1110110000, 1111000010, 1111000100, 1111001000, 1111010000, 1111100000.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
          x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    a:= n-> coeff(b(2*n), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]*b[n - 1 - f]]][Min[g - 1, n - g/2]]][2^(Length@IntegerDigits[n, 2] - 1)]];
    a[n_] := Coefficient[b[2n], x, n];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 19 2021, after Alois P. Heinz *)

Formula

a(n) = A309049(2n,n).