A309051 Total number of 0's in all (binary) max-heaps on n elements from the set {0,1}.
0, 1, 3, 7, 13, 24, 42, 77, 122, 206, 332, 578, 889, 1484, 2338, 4019, 5960, 9685, 14887, 25134, 37225, 60704, 92919, 156646, 227302, 364551, 550329, 917822, 1337358, 2158150, 3258779, 5441757, 7800755, 12412461, 18546566, 30708486, 44327782, 71090442
Offset: 0
Keywords
Examples
a(4) = 13 = 4+3+2+2+1+1+0, the total number of 0's in 0000, 1000, 1010, 1100, 1101, 1110, 1111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5632
- Eric Weisstein's World of Mathematics, Heap
- Wikipedia, Binary heap
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand( x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n))) end: a:= n-> subs(x=1, diff(b(n), x)): seq(a(n), n=0..40);
-
Mathematica
b[n_][x_] := b[n][x] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f][x] b[n - 1 - f][x]]][Min[g - 1, n - g/2]]][2^(Length[IntegerDigits[ n, 2]] - 1)]]; a[n_] := b[n]'[1]; a /@ Range[0, 40] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)
Comments