cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309051 Total number of 0's in all (binary) max-heaps on n elements from the set {0,1}.

Original entry on oeis.org

0, 1, 3, 7, 13, 24, 42, 77, 122, 206, 332, 578, 889, 1484, 2338, 4019, 5960, 9685, 14887, 25134, 37225, 60704, 92919, 156646, 227302, 364551, 550329, 917822, 1337358, 2158150, 3258779, 5441757, 7800755, 12412461, 18546566, 30708486, 44327782, 71090442
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Comments

Also the total number of 1's in all (binary) min-heaps on n elements from the set {0,1}.

Examples

			a(4) = 13 = 4+3+2+2+1+1+0, the total number of 0's in 0000, 1000, 1010, 1100, 1101, 1110, 1111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
          x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    a:= n-> subs(x=1, diff(b(n), x)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_][x_] := b[n][x] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f][x] b[n - 1 - f][x]]][Min[g - 1, n - g/2]]][2^(Length[IntegerDigits[ n, 2]] - 1)]];
    a[n_] := b[n]'[1];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A309049(n,k).
a(n) = n * A091980(n+1) - A309052(n).