cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309058 Partitions of n with parts having at most 3 distinct magnitudes.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 72, 91, 115, 145, 177, 215, 258, 308, 364, 424, 491, 568, 651, 742, 838, 940, 1065, 1181, 1320, 1454, 1619, 1757, 1957, 2124, 2329, 2510, 2763, 2934, 3244, 3432, 3752, 3964, 4329, 4531, 4965, 5179, 5627, 5872, 6391, 6577, 7178, 7405
Offset: 0

Views

Author

Nathan McNew, Jul 09 2019

Keywords

Comments

Partitions whose Ferrers diagrams do not contain the pattern 4321 under removal of rows and columns (as defined by Bloom and Saracino).

Examples

			a(10) = 41 because all of the 42 integer partitions of 10 count (i.e., 10 = 10, 10 = 9+1 = 8+1+1, etc.), except the partition 10 = 4+3+2+1.
		

Crossrefs

Cf. A265250 (partitions of n with parts having at most 2 distinct magnitudes). Sum of A002134, A002133 and A000005.
Cf. A116608.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
          `if`(t=1, `if`(irem(n, i)=0, 1, 0)+b(n, i-1, t),
           add(b(n-i*j, i-1, t-`if`(j=0, 0, 1)), j=0..n/i))))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jul 11 2019
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, If[t == 1, If[Mod[n, i] == 0, 1, 0] + b[n, i - 1, t], Sum[b[n - i*j, i - 1, t - If[j == 0, 0, 1]], {j, 0, n/i}]]]];
    a[n_] := b[n, n, 3];
    a /@ Range[0, 100] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{i>=1} x^i/(1-x^i) + Sum_{j=1..i-1} x^(i+j)/((1-x^i)*(1-x^j)) + Sum_{k=1..j-1} x^(i+j+k)/((1-x^i)*(1-x^j)*(1-x^k)).
a(n) = Sum_{k=0..3} A116608(n,k). - Alois P. Heinz, Jul 11 2019