A309058 Partitions of n with parts having at most 3 distinct magnitudes.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 72, 91, 115, 145, 177, 215, 258, 308, 364, 424, 491, 568, 651, 742, 838, 940, 1065, 1181, 1320, 1454, 1619, 1757, 1957, 2124, 2329, 2510, 2763, 2934, 3244, 3432, 3752, 3964, 4329, 4531, 4965, 5179, 5627, 5872, 6391, 6577, 7178, 7405
Offset: 0
Keywords
Examples
a(10) = 41 because all of the 42 integer partitions of 10 count (i.e., 10 = 10, 10 = 9+1 = 8+1+1, etc.), except the partition 10 = 4+3+2+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
- J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, arXiv:1808.04238 [math.CO], 2018.
- J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, European J. Combin., 71 (2018), 246-267.
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, `if`(t=1, `if`(irem(n, i)=0, 1, 0)+b(n, i-1, t), add(b(n-i*j, i-1, t-`if`(j=0, 0, 1)), j=0..n/i)))) end: a:= n-> b(n$2, 3): seq(a(n), n=0..100); # Alois P. Heinz, Jul 11 2019
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, If[t == 1, If[Mod[n, i] == 0, 1, 0] + b[n, i - 1, t], Sum[b[n - i*j, i - 1, t - If[j == 0, 0, 1]], {j, 0, n/i}]]]]; a[n_] := b[n, n, 3]; a /@ Range[0, 100] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz *)
Formula
G.f.: Sum_{i>=1} x^i/(1-x^i) + Sum_{j=1..i-1} x^(i+j)/((1-x^i)*(1-x^j)) + Sum_{k=1..j-1} x^(i+j+k)/((1-x^i)*(1-x^j)*(1-x^k)).
a(n) = Sum_{k=0..3} A116608(n,k). - Alois P. Heinz, Jul 11 2019
Comments