A309090 a(n) is the least x such that x^2 mod prime(i), i=1..n, are all distinct.
1, 2, 2, 3, 3, 172, 213, 213, 333, 333, 1228, 1438, 2152, 3832, 3832, 3832, 5792, 22732, 22732, 37342, 37342, 37342, 37342, 37342, 545408, 629247, 629247, 629247, 629247, 629247, 629247, 629247, 629247, 1423713, 8136838, 8136838
Offset: 1
Keywords
Examples
a(5) = 3 because 3^2 mod 2 = 1, 3^2 mod 3 = 0, 3^2 mod 5 = 4, 3^2 mod 7 = 2 and 3^2 mod 11 = 9 are all distinct, while this is not the case for 1^2 or 2^2 (e.g. 2^2 mod 5 = 2^2 mod 7 = 4).
Crossrefs
Cf. A279073.
Programs
-
Maple
P:= NULL: v:= 1: for n from 1 to 35 do P:= P ,ithprime(n); for k from v do if nops({seq(k^2 mod P[i],i=1..n)}) = n then v:= k; A[n]:= k; break fi od od: seq(A[n],n=1..35);
-
PARI
isok(k, n) = my(v=vector(n, j, lift(Mod(k, j)^2))); #v == #Set(v); a(n) = {my(k=1); while(!isok(k, n), k++); k;} \\ Michel Marcus, Jul 12 2019
Comments