A309097 Number of partitions of n avoiding the partition (4,2,1).
1, 1, 2, 3, 5, 7, 11, 14, 20, 25, 32, 39, 49, 56, 68, 79, 91, 103, 119, 132, 150, 165, 183, 202, 224, 241, 264, 287, 311, 334, 362, 385, 415, 442, 472, 503, 535, 563, 599, 634, 670, 703, 743, 778, 820, 859, 899, 942, 988, 1027, 1074, 1119, 1167, 1214, 1266
Offset: 0
Links
- Jonathan Bloom and Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
- J. Bloom and D. Saracino, On Criteria for rook equivalence of Ferrers boards, arXiv:1808.04221 [math.CO], 2018.
- J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, arXiv:1808.04238 [math.CO], 2018.
- J. Bloom and D. Saracino Rook and Wilf equivalence of integer partitions, European J. Combin., 76 (2018), 199-207.
- J. Bloom and D. Saracino On Criteria for rook equivalence of Ferrers boards, European J. Combin., 71 (2018), 246-267.
- Jianing Song, Proof that there exists a nilpotent matrix of order n whose rank is r and nilpotent index is l if and only if ceiling(n/(n-r)) <= l <= r+1
- Wikipedia, Nilpotent matrix
Programs
-
PARI
lista(n)=my(b(k)=x^k/(1-x^k)+O(x*x^n));Vec(1+sum(i=1,n,b(i)*(1+sum(j=i+1,n,b(j)*(1+b(j+1)))))) \\ Christian Sievers, Sep 01 2025
Formula
G.f.: 1 + Sum_{i>=1} b(i) * ( 1 + Sum_{j>i} b(j) * ( 1 + b(j+1) ) ) where b(k)=x^k/(1-x^k). - Christian Sievers, Sep 01 2025
Extensions
More terms from Alois P. Heinz, Jul 12 2019
Comments