cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309104 a(n) = Sum_{k >= 0} floor(n^(2*k+1) / (2*k+1)!).

Original entry on oeis.org

0, 1, 3, 9, 25, 72, 199, 545, 1487, 4048, 11007, 29930, 81371, 221199, 601295, 1634499, 4443044, 12077466, 32829974, 89241138, 242582585, 659407853, 1792456409, 4872401708, 13244561050, 36002449653, 97864804699, 266024120286, 723128532126, 1965667148555
Offset: 0

Views

Author

Rémy Sigrist, Jul 12 2019

Keywords

Comments

This sequence is inspired by the Maclaurin series for the hyperbolic sine function.

Examples

			For n = 5:
- we have:
  k  5^(2*k+1)/(2*k+1)!
  -  ------------------
  0                   5
  1                  20
  2                  26
  3                  15
  4                   5
  5                   1
  >=6                 0
- hence a(5) = 5 + 20 + 26 + 15 + 5 + 1 = 72.
		

Crossrefs

See A309087 for similar sequences.
Cf. A000471.

Programs

  • Maple
    f:= proc(n) local t,k,v;
      v:= n; t:= n;
      for k from 1 do
        v:= v*n^2/(2*k*(2*k+1));
        if v < 1 then return t fi;
        t:= t + floor(v);
      od
    end proc:
    map(f, [$0..30]); # Robert Israel, Mar 18 2020
  • PARI
    a(n) = { my (v=0, d=n); forstep (k=2, oo, 2, if (d<1, return (v), v += floor(d); d *= n^2/(k*(k+1)))) }

Formula

a(n) ~ sinh(n) as n tends to infinity.
a(n) <= A000471(n).

Extensions

Definition corrected by Robert Israel, Mar 18 2020