A309142 Rank of elliptic curve y^2 = x^3 + (n^2 - 6*n -3)*x^2 + 16*n*x.
0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1
Offset: 10
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 10..5000
- Andrew Bremner, Richard K. Guy, Richard J. Nowakowski, Which integers are representable as the product of the sum of three integers with the sum of their reciprocals?, Math. Comp. 61 (1993), 117-130.
- Allan J. MacLeod, Knight's Problem
Programs
-
PARI
{a(n) = ellanalyticrank(ellinit([0, n^2-6*n-3, 0, 16*n, 0]))[1]}
Comments