A309157 Rectangular array in 3 columns that solve the complementary equation c(n) = a(n) + b(2n), where a(1) = 1; see Comments.
1, 2, 5, 3, 4, 12, 6, 7, 20, 8, 9, 26, 10, 11, 33, 13, 14, 41, 15, 16, 47, 17, 18, 54, 19, 21, 61, 22, 23, 68, 24, 25, 75, 27, 28, 83, 29, 30, 89, 31, 32, 96, 34, 35, 104, 36, 37, 110, 38, 39, 117, 40, 42, 124, 43, 44, 131, 45, 46, 138, 48, 49, 146, 50, 51
Offset: 1
Examples
c(1) = a(1) + b(2) > = 1 + 3, so that a(2) = mex{1,2} = 3; b(2) = mex{1,2,3} = 4; c(1) = 5. Then c(2) = a(2) + b(4) >= 3 + 8, so that a(3) = 6, b(3) = 7; a(4) = 8, b(4) = 9; c(2) = a(2) + b(4) = 3 + 9 = 12. n a(n) b(n) c(n) -------------------- 1 1 2 5 2 3 4 12 3 6 7 20 4 8 9 26 5 10 11 33 6 13 14 41 7 15 16 47 8 17 18 54 9 19 21 61 10 22 23 68
Links
- Clark Kimberling and Peter J. C. Moses, Complementary Equations with Advanced Subscripts, J. Int. Seq. 24 (2021) Article 21.3.3.
Crossrefs
Programs
-
Mathematica
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); a = b = c = {}; h = 1; k = 2; Do[Do[AppendTo[a, mex[Flatten[{a, b, c}], Max[Last[a /. {} -> {0}], 1]]]; AppendTo[b, mex[Flatten[{a, b, c}], Max[Last[b /. {} -> {0}], 1]]], {k}]; AppendTo[c, a[[h Length[a]/k]] + Last[b]], {150}]; {a, b, c} // ColumnForm a = Take[a, Length[c]]; b = Take[b, Length[c]]; Flatten[Transpose[{a, b, c}]] (* Peter J. C. Moses, Jul 04 2019 *)
Comments