cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A309173 Expansion of Product_{k>=1} (1 + (1 + x + x^2) * x^k).

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 15, 23, 34, 50, 71, 100, 140, 195, 268, 363, 487, 650, 865, 1145, 1505, 1962, 2541, 3275, 4208, 5390, 6879, 8740, 11053, 13917, 17459, 21837, 27244, 33906, 42085, 52085, 64268, 79071, 97025, 118772, 145082, 176869, 215204, 261333, 316705, 383019
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Product[(1 + (1 + x + x^2) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[x^k Sum[(-1)^(d + 1) (1 + x + x^2)^d/d, {d, Divisors[k]}], {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1) * (1 + x + x^2)^d/d).
Showing 1-1 of 1 results.