A309179 Primes to which a record size square needs to be added to reach another prime.
2, 3, 5, 29, 41, 389, 479, 881, 1931, 3461, 3701, 7589, 9749, 26171, 153089, 405701, 1036829, 1354349, 1516829, 2677289, 4790309, 4990961, 34648631, 46214321, 50583209, 98999969, 305094851, 331498961, 362822099, 4373372351, 11037674441, 12239355719, 16085541359
Offset: 1
Keywords
Examples
a(1) = 2; r(1) = 1. a(2) = 3; 3 + 1^2 is composite, but 3 + 2^2 is prime, so r(2) = 2. a(3) = 5; 5 + k^2 is composite for 0 < k < 6, but 5 + 6^2 is prime, so r(3) = 6. The following are primes: 7 + 2^2, 11 + 6^2, 13 + 2^2, 17 + 6^2, 19 + 2^2, 23 + 6^2. a(4) = 29; 29 + k^2 is composite for 0 < k < 12, but 29 + 12^2 is prime: r(4) = 12.
Programs
-
PARI
f(n) = {k=1; while(!isprime(n+k^2), k++); k;} lista(NN) = {m=0; forprime(p=1, NN, if(f(p)>m, m=f(p);print1(p,", ")))} \\ Jinyuan Wang, Jul 15 2019
-
Python
from sympy import isprime, nextprime n, p, r = 0, 0, 0 while(True): p = nextprime(p) ; k = 1 while not isprime(p + k**2): k += 1 if k > r: n += 1 ; r = k print("a({}) = {}".format(n,p))
Extensions
a(30)-a(33) from Giovanni Resta, Jul 16 2019
Comments