A340232 a(n) is the least number with exactly 2*n bi-unitary divisors.
2, 6, 32, 24, 512, 96, 8192, 120, 131072, 1536, 2097152, 480, 33554432, 24576, 536870912, 840, 8589934592, 7776, 137438953472, 7680, 2199023255552, 6291456, 35184372088832, 3360, 562949953421312, 100663296, 9007199254740992, 122880, 144115188075855872, 124416
Offset: 1
Keywords
Examples
a(1) = 2 since 2 is the least number with 2*1 = 2 bi-unitary divisors, 1 and 2. a(2) = 6 since 6 is the least number with 2*2 = 4 bi-unitary divisors, 1, 2, 3 and 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..62
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], e + 1, e]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); max = 10; s = Table[0, {max}]; c = 0; n = 2; While[c < max, i = d[n]/2; If[i <= max && s[[i]] == 0, c++; s[[i]] = n]; n++]; s
Comments