A309246 Least number k which is not a divisor of n such that k^2 - n is a nonsquare powerful number.
3, 11427, 15503069909027, 6, 73, 62531004125, 85227106679780, 20, 15, 71457130044805582612325294634331, 56, 47, 16, 33017, 1138, 68, 23, 19, 762488, 146, 1552808, 47, 6234, 32, 45, 2537, 51700, 54, 426, 83, 34, 40, 3601, 948281, 531783519104, 42, 73, 16493
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..50
- Jean-Marie De Koninck, Nicolas Doyon, Florian Luca, and Michoacán Morelia, Powerful values of quadratic polynomials, Journal of Integer Sequences, Vol. 14, No. 3 (2011), Article 11.3.3.
Programs
-
PARI
is_a102834(n) = ispowerful(n) && !issquare(n) \\ after Charles R Greathouse IV in A102834 a(n) = for(k=1, oo, if(n%k!=0 && is_a102834(k^2-n), return(k))) \\ Felix Fröhlich, Jul 19 2019
Formula
a(2) = 11427 since 11427^2 - 2 = 130576327 = 7^3 * 617^2 is a nonsquare powerful number, and k^2 - 2 is not a nonsquare powerful number for all k < 11427.
Comments