cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309266 Expansion of (1 + x) * Product_{k>=1} (1 + x^k)/(1 - x^k).

Original entry on oeis.org

1, 3, 6, 12, 22, 38, 64, 104, 164, 254, 386, 576, 848, 1232, 1768, 2512, 3534, 4926, 6812, 9348, 12736, 17240, 23192, 31016, 41256, 54594, 71890, 94232, 122976, 159816, 206872, 266768, 342756, 438868, 560064, 712448, 903526, 1142478, 1440528, 1811384, 2271720, 2841800, 3546224
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 42; CoefficientList[Series[(1 + x) Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = Sum[PartitionsP[k] PartitionsQ[n - k], {k, 0, n}]; Table[a[n] + a[n - 1], {n, 0, 42}]

Formula

G.f.: (1 + x)/theta_4(x), where theta_4() is the Jacobi theta function.
a(n) = A015128(n) + A015128(n-1).
a(n) ~ exp(Pi*sqrt(n)) / (4*n) * (1 - (Pi/4 + 1/Pi)/sqrt(n)). - Vaclav Kotesovec, Jul 20 2019