A309280 T(n,k) is (1/k) times the sum of the elements of all subsets of [n] whose sum is divisible by k; triangle T(n,k), n >= 1, 1 <= k <= n*(n+1)/2, read by rows.
1, 6, 1, 1, 24, 6, 4, 1, 1, 1, 80, 20, 9, 4, 4, 2, 2, 1, 1, 1, 240, 60, 30, 14, 12, 7, 5, 3, 3, 3, 2, 2, 1, 1, 1, 672, 168, 84, 42, 29, 20, 15, 10, 9, 7, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 1792, 448, 202, 112, 71, 49, 40, 27, 23, 17, 15, 12, 10, 10, 8, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1
Offset: 1
Examples
The subsets of [4] whose sum is divisible by 3 are: {}, {3}, {1,2}, {2,4}, {1,2,3}, {2,3,4}. The sum of their elements is 0 + 3 + 3 + 6 + 6 + 9 = 27. So T(4,3) = 27/3 = 9. Triangle T(n,k) begins: 1; 6, 1, 1; 24, 6, 4, 1, 1, 1; 80, 20, 9, 4, 4, 2, 2, 1, 1, 1; 240, 60, 30, 14, 12, 7, 5, 3, 3, 3, 2, 2, 1, 1, 1; ...
Links
- Alois P. Heinz, Rows n = 1..50, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, m, s) option remember; `if`(n=0, [`if`(s=0, 1, 0), 0], b(n-1, m, s) +(g-> g+[0, g[1]*n])(b(n-1, m, irem(s+n, m)))) end: T:= (n, k)-> b(n, k, 0)[2]/k: seq(seq(T(n, k), k=1..n*(n+1)/2), n=1..10); # second Maple program: b:= proc(n, s) option remember; `if`(n=0, add(s/d *x^d, d=numtheory[divisors](s)), b(n-1, s)+b(n-1, s+n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0)): seq(T(n), n=1..10);
-
Mathematica
b[n_, m_, s_] := b[n, m, s] = If[n == 0, {If[s == 0, 1, 0], 0}, b[n-1, m, s] + Function[g, g + {0, g[[1]] n}][b[n-1, m, Mod[s+n, m]]]]; T[n_, k_] := b[n, k, 0][[2]]/k; Table[T[n, k], {n, 1, 10}, {k, 1, n(n+1)/2}] // Flatten (* Jean-François Alcover, Oct 04 2019, after Alois P. Heinz *)
Formula
T(n+1,n*(n+1)/2+1) = A000009(n) for n >= 0.
Comments